ESSEX COUNTY COUNCIL ASSESSMENT CONTRACT 3

APPROVAL IN PRINCIPLE FOR THE ASSESSMENT OF STOW MARIES HALT BRIDGE

ECC BRIDGE NO. 1658
RAIL PROPERTY Ltd BRIDGE NO. WFM/836

TOPSTOPS

APPROVAL IN PRINCIPLE FOR THE ASSESSMENT OF STOW MARIES HALT BRIDGE

ECC Bridge Number 1658

Rail Property Number WFM/836

APPROVAL IN PRINCIPLE CONTENTS

- British Railways Board FORM 'AA' (BRIDGES)
- British Railways Board FORM 'AA/1' (BRIDGES)
- Location Plan
- General Arrangement, Cross Section and Idealisation Drawings
- Technical Approval Schedule "TAS" (June 1989)
- Appendix to TAS Schedule dated (June 1989) WS Atkins amended March 1999
- Appendix: Inspection for Assessment

AI1877/72/1.GEN Jan 2000

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

STRUCTURE / LINE NAME STOW MARIES HALT BRIDGE

ELR / STRUCTURE NO. WFM/836

BRIEF DESCRIPTION OF EXISTING BRIDGE:

(a) Span Arrangement

The bridge has 3 no. clear square spans of 7.81m, 7.76m and 7.83m. There is no angle of skew.

(b) Superstructure Type

Three span brick arch.

(c) Substructure Type

Brick abutments and piers.

(d) Details of any Special Features

None.

ASSESSMENT CRITERIA

(a) Loadings and Speed

Loadings to be in accordance with BD 21/97. The current permitted traffic speed across the structure is 40mph.

(b) Codes to be used

See attached TAS schedule and March 1999 addendum.

(c) Proposed Method of Structural Analysis

The structure will be analysed as a multi span arch using the MULTI mechanism method computer program. The individual arches will be analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. For the overall capacity of the bridge the results of the MULTI mechanism will be used. For the analysis the following parameters will be adopted:

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ARCHIE/MULTI

Backing level	1.5m above springing level
(determined from record drawings)	
Masonry self weight	21kN/m ³
Fill self weight	19kN/m ³
Surfacing self weight	23kN/m ³
φ' for fill	30°
ARCHIE passive pressure coefficient	0.3
Masonry strength	4.4 N/mm ²

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

MEXE:

		North Arch	Centre Arch	South Arch
Condition Factor	F_{cM}	0.9	0.9	0.9
Barrel Factor	\mathbf{F}_{b}	1.0	1.0	1.0
Fill Factor	$\mathbf{F_f}$	0.7	0.7	0.7
Width Factor	F_{w}	0.9	0.9	0.9
Mortar Factor	\mathbf{F}_{mo}	0.9	0.9	0.9
Depth Factor	F_d	0.8	0.8	0.8

Axle lift-off will be considered.

Section sizes and dimensions will be based on drawings AI1658/1/FIG 01, 02, 03, 07, 08 and 09.

(d) Details of any Special Requirements

None

STRUCTURAL ASSESSMENT ENGINEER'S COMMENTS

CIVIL ENGINEER'S COMMENTS

	Britich	Railways	e Dogre
$\overline{}$	DHUSH	Namvay:	s Duait

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

BRB WORKS GROUP COMMENTS - IF APPLICABLE

PROPOSED CATEGORY F	OR INDEPENDENT C	HECK
SUPERSTRUCTURE	2	
SUBSTRUCTURE	N/A	
NAME OF CHECKER SUG		
THE ABOVE IS SUBMITT	ED FOR APPROVAL I	N PRINCIPLE
	SIGNEI	
	TITLE	ACCESSIVENCE TEXTS VEXUER
	DATE	۷ در استون در استون ر

FOR AND ON BEHALF OF WS ATKINS CONSULTANTS LTD

_			
	2 milition	Railway	e Deard
	2111211	NORWEN	3 - 1 - 1 - 1 - 1

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

CATEGORY 1

THE ABOVE ASSESSMENT, WITH AMENDMENTS SHOWN, IS APPROVED IN PRINCIPLE:

SIGNED	N/A
TITLE	
DATE	

CATEGORY 2 AND 3

THE ABOVE ASSESSMENT, WITH AMENDMENTS SHOWN, IS APPROVED IN PRINCIPLE:

FORM 'AA/1' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ADDITIONAL INFORMATION REQUIRED FOR BRB PUBLIC ROAD OVERBRIDGES ASSESSED AS PART OF BRIDGEGUARD III

STRUCTURE / LINE NAME STOW MARIES HALT BRIDGE

ELR / STRUCTURE NO. WFM/836

SCOPE OF ASSESSMENT

An inspection of the structure has been carried out prior to the assessment in order to confirm section sizes and overall dimensions as shown on the drawings. The substructure shows no signs of distress and is deemed satisfactory, therefore no analysis will be carried out. The deck will be assessed to determine its load carrying capacity at ULS. HB loading and SLS checks are not applicable to arches. The parapets will not be assessed since they do not meet current standards.

ASSESSMENT CRITERIA

a) Standards and Codes of Practice to be used in assessment

See attached TAS schedule and March 1999 addendum.

b) Proposed method of structural analysis

The structure will be analysed as a multi span arch using the MULTI mechanism method computer program. The individual arches will be analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. For the overall capacity of the bridge the results of the MULTI mechanism will be used. For the analysis the following parameters will be adopted:

ARCHIE/MULTI

Backing level
(determined from record drawings)

Masonry self weight

Fill self weight

Surfacing self weight

\$\phi'\$ for fill

ARCHIE passive pressure coefficient

Masonry strength

1.5m above springing level

21kN/m³

19kN/m³

23kN/m³

30°

0.3

4.4 N/mm²

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

FORM 'AA/1' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

MEXE:

		North Arch	Centre Arch	South Arch
Condition Factor	F_{cM}	0.9	0.9	0.9
Barrel Factor	F_b	1.0	1.0	1.0
Fill Factor	$\mathbf{F}_{\mathbf{f}}$	0.7	0.7	0.7
Width Factor	$\mathbf{F}_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	F_{mo}	0.9	0.9	0.9
Depth Factor	F_d	0.8	0.8	0.8

Axle lift-off will be considered.

Section sizes and dimensions will be based on drawings AI1877/1658/FIG 01, 02, 03, 07, 08 and 09.

- c) Planned Highway works / modifications at this site None planned.
- d) Road designation / class and whether classed as a heavy load route Unclassified. The road is not a heavy load route.
- e) Any other requirement

None.

The above is agreed subject to the amendments and comments shown below

SIGNI

hy Broises Manage

DATE

FOR AND ON BEHALF ESSEX COUNTY COUNCIL TRANSPORTATION AND OPERATIONAL SERVICES DIVISION.

LOCATION PLAN, DRAWINGS AND IDEALISATION DIAGRAMS

AI1877/72/1.GEN Jan 2000

ION AND

OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD. CM1 1QH Telephone 01245 492211

065 Arch No.3 Pier No.2 7830 25 3195 Arch No.2 7760 9 2982 Arch No.1 Pler No.1 7830

poor visibility. Arches appear sound in construction (no deformation) therefore the levels are assumed to be as east elevation

han you come and the same

WEST ELEVATION

DPERATIONAL SERVICES, BANKOWAENTAL SERVICES DRECTIONATE, COUNTY HALL, CHELMSFORD, CALL 1QH

Teleptrone 01245 492211

SOULDS NTS BETTEN DW 12/NO 01/NO 01/

ARIES RAIL PROPERTY LTD BRIDGES

RAIL PROPERTY LTD BRIDG

STOW MARIES HALT, STOW MARIES ELEVATIONS

DO NOT SCALE

ECC Bridge No. 1658 Roll Property Board No. WFM/836

Notes:

All Dimensions in mm Alt levels in m above local datum

> ပ 8

> > Faces of arch barrel show 5 no. brick rings

REFER TO DWG 02 FOR LOCATION OF SECTION A-A

TYPICAL CROSS SECTION A-A

Not To Scale

Position	CL Arch 1 (North)	CL Arch 1 (North) CL Arch 2 (Central) CL Arch 3 (South)	CL Arch 3 (South)
A Top of West Parapet	10.118	10.130	10.090
B Bottom of West Parapet	8.646	8.662	8.521
C West Edge Carriageway	8.747	8.726	8.612
D CL Carriageway	8.749	8.750	8.615
E East Edge Carriageway	8.735	8.730	8.586
F Bottom of East Parapet	8.669	8.701	8.534
G Top of East Parapet	10.085	10.094	10.035

онеми до ношления плиним същено

HEAD OF TRANSPORTATION AND OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD. CM1 1QH Telephone 01245 492211

ECC Bridge No.

1658

Rail Property Board No. WFM/836

ARCH No.1 (NORTH ARCH) IDEALISATION DIAGRAM NTS

STOW MARIES HALT, STOW MARIES
IDEALISATION DIAGRAM ARCH 1

DRWG.NO. Al1877/	/1658/fig07	
CAD NO. N:1877/	/1658/fig07	
SCALES NTS		
DATE JAN 00	DRAWN/TRACED SD	
DATE JAN 00	CHECKED DW	
DATE	AUTHORISED	

OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD. CM1 1QH Telephone 01245 492211

ECC Bridge No.

1658

Rail Property Board No. WFM/836

ARCH No.2 (CENTRAL ARCH) IDEALISATION DIAGRAM NTS

STOW MARIES HALT, STOW MARIES
IDEALISATION DIAGRAM ARCH 2

DRWG.NO. AI1877	/1658/fig08
CAD NO. N:1877	/1658/fig08
scales NTS	
DATE JAN 00	DRAWN/TRACED SD
DATE JAN 00	CHECKED DW
DATE	AUTHORISED

HEAD OF TRANSPORTATION AND OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD. CM1 1QH Telephone 01245 492211

ECC Bridge No. 1658
Rail Property Board No. WFM/836

ARCH No.3 (SOUTH ARCH) IDEALISATION DIAGRAM NTS

SCHEME TITLE ECC	ASSESS	MENT	CONTR	ACT 3
STOW	MARIES	HALT,	STOW	MARIES
IDEA	LISATION	DIAGE	RAM AF	RCH 3

DRWG.NO. Al1877/1658/fig09		
CAD NO. N:1877/1658/fig09		
scales NTS		
DATE JAN 00	DRAWN/TRACED SD	
DATE JAN 00	CHECKED DW	
DATE	AUTHORISED	

TECHNICAL APPROVAL SCHEDULE

AI1877/72/1.GEN Jan 2000

TECHNICAL APPROVAL SCHEDULE "TAS" (JUNE 1989)

SCHEDULE OF DESIGN DOCUMENTS RELATING TO HIGHWAY BRIDGES & STRUCTURES (All documents are taken to include revisions current at date of this TAS).

1. BRITISH STANDARDS

BS 153 Part 3A, Specification for Steel Girder Bridges (see BE 1/77).

BS 5268 Part 2. Structural Use of Timber

BS 5400 - Steel concrete and composite bridges

Part 1: 1978 - General Statement (SEE BD 15/82)

Part 2: 1978 - Specification for loads (see BD 14/82)

Part 3: 1982 - CP for design of steel bridges (see BD 13/82)

Part 4: 1984 - CP for design of concrete bridges (see BD 24/84)

Part 5: 1979 - CP for design of composite bridges (see BD 16/82)

Part 9: 1983 - Bridge bearings (see BD 20/83)

Part 10: 1980 - CP for fatigue (see BD 9/81)

BS 5628: Part 1: 1978 - Unreinforced Masonry

BS 5930: 1981 - Site investigations

BS 6031: 1981 - Earthworks

2. BRITISH STANDARD CODES OF PRACTICE

CP 114: Part 2 Reinforced concrete in buildings (see Tech Memo BE 1/73)

CP 116 Part 2. The structural use of precast concrete (see Tech Memo BE 1/73)

CP 118 The structural use of aluminium

CP 2 Earth retaining structures

CP 2004 Foundations

PUBLICATIONS (HMSO)

Railway construction and Operation Requirements, Structural and Electrical clearances (1977).

Railway construction and operation. Requirements for passenger lines and recommendations for goods lines 1950 (reprinted 1970).

Roads in urban areas and Metric Supplement (as amended by TA 32/82)

Layout of roads in rural areas and Metric Supplement (as amended by TA 28/82).

Specification for Highway Works and Notes for Guidance (1986 Edition).

Highway Construction Details (1987 Edition).

Simplified Tables of External loads on Buried Pipelines (1970).

4. MISCELLANEOUS

Circular Roads No 61/72 - Routes for heavy and high abnormal loads.

5. TECHNICAL MEMORANDA (BRIDGES)

- BE 5 The design of Highway bridge parapets (4th revision)
- BE 27 Waterproofing and surfacing of bridge docks.
- BE 3/72 Expansion joints for use La highway bridge docks.
- BE 1/73 Reinforced concrete for highway structures (Relevant ports for the design of buried precast concrete pipes and sign/signal gantries only).
- BE 1/74 The independent checking of erection proposals and temporary works details for major highway structure an trunk roads and motorways.
- BE 8/75 Painting of concrete highway structures
- BE1/77 Standard highway loadings (Relevant parts for the design of buried precast concrete pipes and sign/signal gantries only)
- BE 7/77 Department standard (interim) motorway sign/signal gantries
- BE 1/78 Design criteria for footbridges and sign/signal gantries (Relevant for the design of sign/signal gantries only)
- BE 3/78 Reinforced earth, and anchored earth retaining walls and bridges abutments for embankments

6. HIGHWAYS TECHNICAL MEMORANDA
H 14/76 Noise barriers - Standard and Materials
7. MEMORANDA (BRIDGES)
IM 5 Formation of continuity joints in bridge decks
8 DEPARTMENTAL STANDARDS
8.1 TRAFFIC ENGINEERING AND CONTROL
TD 2/78 Pedestrian Subways - layout and dimensions
TD 3/79 Combined pedestrian and cycle subways - layout and dimensions
TD 9/81 Road layout and geometry. Highway link design
TD 19/83 Safety fences and barriers
TD) 27/86 Cross Sections and headroom
8.2 BRIDGES AND STRUCTURES
BD 2/89 Technical approval of DTp highway structures on motorways and other trunk roads
BD 6/81 Approval in principle and calibrating of computer programs for use in DTp highway structures on trunk roads and motorways
BD 7/81 Weathering steel for highway structures
BD 9/81 Implementation of BS 5400 Pt 10, CP for fatigue
BD 10/82 Design of highway structures in areas of mining subsidence
BD 12/82 Corrugated steel buried structures
BD 13/82 Design of steel bridges - 'Use of BS 5400 Pt 3: 1982
BD 14/82 Loads for highway bridges - Use of BS 5400 Pt 2: 1978
BD 15/82 General principles - Use of BS 5400 Pt 1: 1978
BD 16/82 Design of composite bridges - 'Use of B3 5400 Pt 5-, 1979
BD 19/83 Standard Bridges
BD 20/83 Bridge Bearings - 'Use of BS \$400 Part 9: 1983

BD 21/84 The assessment of highway bridges and structures

AI1877/72/1.GEN

Jan 2000

BD 24/84	Design of concrete bridges - Use of BS 5400 Pt 4: 1984
BD 26/86	Design of lighting columns
BD 27/86	Materials for the repair of concrete highway structures
BD 28/87	Early thermal cracking of concrete
BD 29/87	Design criteria for footbridges
BD 30/87	Backfilled retaining walls and bridge abutments
BD 31/87	Buried concrete box type structures
BD 32/88	Piled foundations
BD 34/88	Assessment and Strengthening of Highway Structures on Motorways and othe Trunk Roads
BD 35/88	Quality Assurance Scheme for paints and similar protective coatings
BD 36/88	The Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures
BD 37/88	Loads for Highway Bridges

APPENDIX TO TAS SCHEDULE DATED JUNE 1989 (WS Atkins amended March 1999, incorporating relevant technical standards published since June 1989)

1. BRITISH STANDARDS

BS 4360: 1990 Specification for Weldable Structural Steel.

BS 4466: 1989 - Scheduling, Dimensioning, Bending and Cutting of Steel
Reinforcement for Concrete

BS 5400 - Steel, Concrete and Composite Bridges.

Part 1: 1988 - General Statement (see BD 15/92).

Part 4: 1990 - CP for Design of Concrete Bridges (see BD 24/92).

BS 5628 - Use of Masonry.

Part 1: 1992 - Unreinforced Masonry.

Part 2: 1985 - Reinforced and Prestressed Masonry.

BS 5975: 1996 CP for Falsework

BS 6651: 1992 - CP for Protection of Structures Against Lightning.

BS 6779 - Highway Parapets for Bridges and Other Structures

Part 1: 1998 — Specification for Vehicle Containment Parapets of Metal Construction.

Part 2: 1991 - Specification for Vehicle Containment Parapets of Concrete Construction.

Part 3: 1994 - Specification for Vehicle Containment Parapets of Combined Metal and Concrete Construction.

BS 7295: 1990: Fusion Bonded Epoxy Coated Carbon Steel Bars for the

Parts 1 & 2 Reinforcement of Concrete

BS 7668: 1984 - Weldable Structural Steels. Hot Finished Structural Hollow

Sections in Weather Resistant Steels

BS 8002: 1994 - CP for Earth Retaining Structures.

BS 8004: 1986 - CP for Foundations.

BS 8118 - Structural Use of Aluminium.

BS EN 10025: 1993 - Specification for Hot Rolled Products of Non-alloy Structural

Steels - Technical Delivery Conditions.

BS EN 10113: Hot Rolled Products in Weldable Fine Grain Structural Steel.

Parts 1-3

BS EN 10155: 1993 — Structural Steel with Improved Atmospheric Corrosion Resistance. Technical Delivery Conditions.

3. DoT PUBLICATIONS (HMSO)

Manual of Contract Documents for Highways Works:

Volume 1: Specification for Highway Works.

Volume 2: Notes for Guidance on the Specification for Highways
Works

Volume 3: Highway Construction Details.

Volume 4: Bills of Quantities for Highways Works.

8. DEPARTMENTAL STANDARDS

8.1 TRAFFIC ENGINEERING AND CONTROL

TD 9/93 Road Layout and Geometry, Highway Link Design.

TD 27/96 - Road Geometry Links - Cross Sections and Headrooms.

TD 32/93 - Wire Rope Safety Fences.

TD 36/93 - Subways for Pedestrians and Pedal Cyclists - Layout and Dimensions.

8.2 BRIDGES AND STRUCTURES

BD 10/97 Design of Highway Structures in Areas of Mining Subsidence.

BD 12/95 - Design of Corrugated Steel Buried Structures with Spans not Exceeding 8m, Including Circular Arches.

BD 13/90 Design of Steel Bridges. Use of BS 5400 Pt 3: 1982.

BD 15/92 - General Principles for the Design and Construction of Bridges - Use of BS 5400 Pt 1: 1988.

BD 20/92 - Bridge Bearings. Use of BS 5400 Pt 9: 1983.

BD 21/97 - The Assessment of Highway Bridges and Structures.

BD 24/92 - Design of Concrete Bridges - Use of BS 5400 Pt 4: 1990.

BD 26/94 - Design of Lighting Columns.

BD 33/94 - Expansion Joints for Use in Highway Bridge Decks.

BD 34/90 -	Technical Requirements for the Assessment and Strengthening Programme for Highway Structures on Motorways and Other Trunk Roads. Stage 1 - Older Short Span Bridges and Retaining Structures.
BD 35/93	Quality Assurance Schemes for Paints and Similar Protective Coatings.
BD 36/92	Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures.
BD 41/97	Reinforced Clay Brickwork Retaining Walls of Pocket Type and Grouted Cavity Type Construction.
BD 42/94	Design of Embedded Retaining Walls and Bridge Abutments (Unpropped or Propped at the Top).
BD 43/90	Criteria and Materials for the Impregnation of Concrete Structures.
BD 44/95	The Assessment of Concrete Highway Bridges and Structures.
BD 45/93	Identification Marking of Highway Structures.
BD 46/92	Technical Requirements for the Assessment and Strengthening Programme for Highway Structures. Stage 2 - Modern Short Span Bridges.
BD 47/94	Waterproofing and Surfacing of Concrete Bridge Decks.
BD 48/93	The Assessment and Strengthening of Highway Bridge Supports.
BD 49/93	Design Rules for Aerodynamic Effects on Bridges.
BD 50/92	Technical Requirements for the Assessment and Strengthening Programme for Highways Structures. Stage 3 - Long Span Bridges.
BD 51/98	Design Criteria for Portal and Cantilever Sign/Signal Gantries.
BD 52/93 -	The Design of Highway Bridge Parapets.
BD 53/95 -	Inspections and Records for Road Tunnels.
BD 54/93 -	Post Tensioned Concrete Bridges. Prioritisation of Special Inspections.

Jan 2000

BD 57/95 - Design for Durability.

BD 58/94. The Design of Concrete Highway Bridges and Structures with External and Unbonded Prestressing.

BD 60/94 ___ The Design of Highway Bridges for Vehicle Collision Loads.

BD 61/96 - The Assessment of Composite Highway Bridges.

BD 62/94 - As Built, Operational and Maintenance Records for Highway
Structures.

BD 63/94 Inspection of Highway Structures.

BD 65/97 - Design Criteria for Collision Protector Beams.

BD 67/96 - Enclosures of Bridges.

BD 68/97 Crib Retaining Walls.

BD 70/97 - Strengthened / Reinforced Soils and Other Fills for Retaining Walls and Bridge Abutments (Use of BS 8006: 1995).

SD 4/92 Procedure for Adoption of Proprietary Manufactured Structures.

APPENDIX INSPECTION FOR ASSESSMENT

Rail Property Ltd

ECC Bridge Assessment Contract No. 3

Rail Property Bridge No. WFM/836

ECC Bridge No. 1658

Structure: Stow Maries Halt Bridge

Date: January 2000

BRIDGE INSPECTION DETAILS AND CONDITION RATING

ECC Bridge No.:

1658

Rail Property Ltd Bridge No.: WFM/836

Bridge Name:

Stow Maries Halt Bridge

Location:

Stow Maries, Essex

Grid reference TQ 583510 199144

Date of Inspection:

Weather:

03 December 1999

Description:

Three span brick arch bridge with brickwork abutments,

piers and parapets.

Inspection Method:

Hands on

CONSULTING ENGINEERS CONDITION RATING			
	****	Satisfactory Condition	
√	***	Repairs Required	
	**	Urgent Repairs Required	
	*	Bridge In Dangerous Condition	

To be filled in by Essex County Council

BRIDGE	CLIENT	BRIDGE	NO 1658
File	Initial	Date	Suggested Condition Rating
Read by			
Read by	mark i		Radio (Ne)
Comments			

Date: January 2000

Index

Section	Description	Page No.
1	Introduction	1
2	Reference Drawings	2
3	Inspection Procedure	3
4	Condition Report	4
5	Conclusions	8
6	Recommendations for Assessment	10
	Appendix - A: Photographs	
	Appendix - B : Defect Diagrams	,
	Appendix - C : Statutory Undertakers	

Date: January 2000

1.0 INTRODUCTION

- 1.1 Essex County Council (ECC) entered into an agreement with Rail Property Ltd to assess Rail Property Ltd owned bridges carrying publicly maintainable highways. WS Atkins Consultants Ltd Essex (WSAE) have been appointed by ECC to carry out the visual inspections and assessments of the bridges.
- 1.2 Stow Maries Halt Bridge carries an unclassified road over a dismantled railway to the south of the village of Stow Maries in Essex OS Ref. TQ 583510 199144.
- 1.4 An inspection of the structure was carried out on 03 December 1999. The inspection included a visual inspection and dimension survey to confirm structural details. The weather was dry, overcast and cold during the inspection.
- 1.5 The results of the inspection are presented within the text of this report.
- 1.6 The structure consists of three square span brick arches supported on brick abutments and piers. The arches have clear spans of 7.81m, 7.76m, 7.83m. The parapets are brick.
- 1.7 The carriageway width varies between 2.9m and 3.7m. The east grass verge varies between 1.8m and 2.2m wide and the west grass verge varies in width between 2.2m and 2.75m. The vertical alignment of the carriageway rises steadily from the southern end with a slight hog curve approximately in the centre of the bridge. The horizontal alignment is straight.
- 1.8 There is no weight restriction on the structure.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/836 ECC Bridge No. 1658

Structure: Stow Maries Halt Bridge

Date: January 2000

2.0 REFERENCE DRAWINGS

2.1 Rail Property Ltd provided a drawing prior to the inspection. The reference is:

5A/13A/836/1

General Arrangement

Following the inspection, survey drawings are produced as below and enclosed in the Approval in Principal for Assessment.

AI1877/DWGS/1658/FIG 01	Elevations
AI1877/DWGS/1658/FIG 02	Plan
AI1877/DWGS/1658/FIG 03	Cross section

Following the inspection, defect diagrams are produced as below and enclosed in appendix B.

AI1877/DWGS/1658/FIG 04 AI1877/DWGS/1658/FIG 05	Elevation defects Arch soffit, pier and abutment face defects
AI1877/DWGS/1658/FIG 06	Parapet defects

Date: January 2000

3.0 INSPECTION PROCEDURE

- 3.1 The inspection was undertaken on 03 December 1999. Reference was made to the Bridge Inspection Guide (HMSO 1983) and the Department of Transport standard BD21/97 and advice note BA16/97.
- 3.2 The visual inspection of the structure was carried out to determine the condition of the bridge. The inspection was carried out within touching distance. Where required, access to the higher level elements of the structure was gained using a ladder.
- 3.3 A full level and dimensional survey was undertaken. Details of the levels and dimensions taken during the inspection are indicated on Drawings No. AI1877/DRGS/1658/FIG 01, FIG 02 and FIG 03 which are included in the Approval in Principle for Assessment.
- 3.4 The extent and severity of all defects were recorded. The photographs in Appendix A and the defect diagrams (Drawing No. AI1877/DRGS/1658/FIG 04, FIG 05 and FIG 06) in Appendix B illustrate the defects.

Date: January 2000

4.0 CONDITION REPORT

4.1 Foundations

The foundations were not accessible during the inspection. No evidence of any movement or distress was detected.

4.2 Abutments

- 4.2.1 The substructure of the bridge consists of brickwork abutments and piers.
- 4.2.2 Both north and south abutments show the effects of leaching and up to 20mm deep mortar loss. The south abutment is also heavily stained and adorned with non-offensive graffiti.

4.3 Piers

- 4.3.1 The piers appear to be in fair condition with the following defects identified:
 - Extensive areas of damp and leaching to both piers (photograph nos. 8 and 9).
 - Extensive areas of mortar loss to both piers, up to 50mm in depth.
 - Non-offensive graffiti to both piers.
 - Pier no. 1 (north pier) has areas of lichen growth on both faces.
 - Both piers are heavily stained.
 - Both piers have small areas of missing bricks (photograph no. 7).
 - Pier no. 2 (south pier) has isolated areas of spalling, up to 30mm deep.

4.4 Arch barrels

- 4.4.1 The arch barrels are constructed from blue brick with lime mortar. Five brick rings are visible in elevation.
- 4.4.2 The arch barrels are all in fair condition with the following defects identified:

Arch no. 1 (north arch)

Isolated area of leaching adjacent to both supports (photograph no. 3).

Date: January 2000

- Extensive mortar loss approximately 10mm deep to northern half of arch soffit.
- Extensive non-offensive graffiti (photograph no. 3).

Arch no. 2 (central arch)

- Small areas of leaching.
- Minor area of 10mm deep mortar loss.
- Soot staining to centre of arch soffit.

Arch no. 3 (south arch)

- Isolated areas of mortar loss, approximately 10mm deep. There is also a section of mortar loss 30mm deep running across the width of the arch barrel between two courses.
- Minor spalling up to 10mm deep (photograph no. 6).
- A 2mm wide crack at the south end of the arch running from the abutment (photograph no. 5).
- A 2mm wide crack in the mortar running adjacent to the crown of the arch across the entire width of the barrel.
- Leaching to the northern half of the soffit and minor areas of damp concrete (photograph no. 4).

4.5 Spandrels, Wing Walls and Arch Rings

- 4.5.1 The brickwork is in fair condition with the following defects identified:
 - Both elevations show minor areas of mortar loss, with average depth 20mm to 30mm.
 - Extensive vegetation growth occurs on both elevations, mainly towards the end of the bridge.
 - Lichen growth to both the north-east and north west wing walls.
 - Isolated areas of spalling, up to 10mm deep, to the east spandrel above the north arch.

Date: January 2000

- A 2mm wide crack in the west spandrel wall, between the central and southern arches.
- The arch rings are in good condition with minor mortar loss and staining of the brickwork being the only defects.

4.6 Embankments

4.6.1 The embankments adjacent to the bridge are heavily overgrown and show no signs of any significant erosion or slippage.

4.7 Parapets

- 4.7.1 The brick parapets comprise 340mm thick brickwork and capping stone units at the parapet ends. No vertical movement joints were found along the parapets.
- 4.7.2 The parapets are in fair condition with the following defects noted:
 - Extensive vegetation growth to both parapets.
 - Vertical cracking to the traffic face of both parapets, the largest of which is 5mm wide. The cracks run through the mortar and not through the brickwork.
 - Extensive mortar loss to both parapets, average depth 10mm.
 - Displacement of coping bricks on the east parapet(photograph no. 10)

4.8 Road Surface

- 4.8.1 The road surface over the bridge deck is in fair condition. Slight surface damage is evident at the southern end of the bridge where chip loss has occurred (photograph no. 11).
- 4.8.2 In addition there are three small hollows in the road where the level deviates by approximately 30mm. These are located at the north east, south east and south west corners of the bridge.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/836 ECC Bridge No. 1658

Structure: Stow Maries Halt Bridge

Date: January 2000

4.9 Waterproofing

4.9.1 The numerous areas of damp brickwork on the bridge indicate the absence of an effective bridge waterproofing system.

Date: January 2000

5.0 CONCLUSION

- 5.1 The structure is in fair condition overall. As well as element specific remedial work there are several areas of spalling brickwork and mortar loss throughout the structure that require repair.
- 5.2 The abutments are in fair condition with the mortar loss requiring repair.
- 5.3 The piers are generally in fair condition. The mortar loss and spalling should be repaired whilst the missing bricks should be replaced.
- 5.4 The arch barrels are in fair condition. The mortar loss to all three barrels should be repaired as should the spalling and cracking to arch no. 3.
- 5.5 The spandrel walls, wing walls and arch rings are in fair condition overall. The mortar loss to both elevations should be repaired. The cracking to the west spandrel wall should be monitored whilst the spalling to the east spandrel should be repaired. The vegetation and lichen growth are not considered serious.
- 5.6 The parapets are generally in fair condition. The mortar loss should be repaired along with the cracks. The displaced coping bricks should be moved back to their original position and secured in position. The vegetation growth is currently not considered serious although this should be monitored to ensure that the structure is not damaged in any fashion.
- 5.7 The carriageway surfacing is in fair condition. The damaged areas should be repaired under routine highway maintenance.
- 5.8 The areas of damp brickwork indicate that the bridge is not effectively waterproofed. The extent of this leakage should be monitored to ensure frost damage does not occur.
- 5.9 Based on the level and dimensional survey the structure has the following geometric features: -

	Arch no. 1	Arch no. 2	Arch no. 3
	(N)	(Central)	(S)
Square span (L)	7.810m	7.755m	7.830m
Skew angle (α)	00	00	00
Rise of the arch barrel (r _c)	1.500m	1.525m	1.510m
Rise at quarter points (r _q)	1.210m	1.230m	1.220m

Structure: Stow Maries Halt Bridge

Date: January 2000

Dimensions were obtained from levels and site measurements. See Approval in Principle for Assessment for drawings showing dimensions.

5.10 Based on the inspection and record drawings each of the arch barrels has the following properties:

Barrel thickness = 590 mmMasonry strength = 4.4 N/mm^2

(Based on BD 21/97 figure 4.2 assuming Class 'B' engineering bricks and

lime mortar)

Backing material present up to a height of 1.5m above springing level.

No structurally significant longitudinal cracking or ring separation.

5.11 Based on the inspection and the recommendations of BA16/97 Annex D, it is suggested that the following factors be used for MEXE analysis: -

	Arch no. 1	Arch no. 2	Arch no. 3
F_{cM}	0.9	0.9	0.9
F_b	1.0	1.0	1.0
$\mathbf{F_f}$	0.7	0.7	0.7
$\mathbf{F}_{\mathbf{w}}$	0.9	0.9	0.9
\mathbf{F}_{mo}	0.9	0.9	0.9
F_d	0.8	0.8	0.8
	$egin{array}{c} F_b \ F_f \ F_w \ F_{mo} \end{array}$	$\begin{array}{ccc} F_{cM} & 0.9 \\ F_{b} & 1.0 \\ F_{f} & 0.7 \\ F_{w} & 0.9 \\ F_{mo} & 0.9 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

For alternative analysis by the ARCHIE and MULTI computer programs, it is suggested that the overall condition factor F_c be based on the above factors and the recommendations of BD 21/97 6.21.

5.12 Statutory Undertaker's plant (Essex and Suffolk Water) is present on the structure.

Structure: Stow Maries Halt Bridge

Date: January 2000

6.0 RECOMMENDATIONS FOR ASSESSMENT

- The information collected from the site inspection, with respect to defects affecting the structural integrity of the bridge, should be incorporated into the Approval in Principle. Defects affecting the assessment are described in section 5.0. It is recommended that, for the Modified MEXE and ARCHIE analyses, the factors in section 5.11 should be adopted. No other allowance need be made for structural deterioration in the assessment calculations.
- 6.2 For the assessment, the geometrical properties and material strengths in section 5.9 and 5.10 should be adopted.
- 6.3 For the assessment, axle lift-off should be considered.
- 6.4 Statutory Undertaker's plant is present in the structure. This can have a detrimental effect on the interaction of the fill with the arch. However, this effect is difficult to measure or quantify and should not be taken into account.
- 6.5 Abutments, wing walls and foundations should be assessed qualitatively in accordance with BD 21/97 Chapter 8.
 - Note that the following are maintenance recommendations and will not affect the proposed assessment.
- 6.6 The weathered and eroded areas of brickwork should be monitored during routine inspections and repairs carried out, as their condition becomes critical. All cracking to the structure should be monitored and repaired as necessary.

Structure: Stow Maries Halt Bridge

Date: January 2000

APPENDIX A

Photographs

Photograph 1 – West elevation of Stow Maries Halt Bridge

Photograph 2 - View over bridge looking north

Photograph 3 - Leaching and graffiti on arch barrel no. 1 (north arch)

Photograph 4 - Damp and leaching to arch barrel no. 3 (south arch)

Photograph 5 - Cracking to the soffit of arch barrel no. 3 (south arch)

Photograph 6 – Spalling to the soffit of arch barrel no. 3 (south arch)

Photograph 7 - Missing bricks to south face of pier no. 1

Photograph 8 - Damp and leaching to east end of pier no. 2

Photograph 9 - Damp and leaching to north face of pier no. 2

Photograph 10 - Displacement of coping bricks to east parapet

Photograph 11 - Surface damage to carriageway at south end of bridge

APPENDIX B

Defect Diagrams

ECC ASSESMENT CONTRACT 3 — RAIL PROPERTY Ltd BRIDGES DETAIL OF STANDARD KEY

KEY	
	Damp concrete/brickwork/stonework
	Leaching
	Dry water staining
+ + + +	Hollow areas (tapping survey)
	Corrosion
	Algae
	Lichen
	Calcareous deposits
	Spalling
	Pointing loss
+ + +	Vegetation growth
00000	Honeycoming
C=0.3	Crack width in mm
R	Area of repair
N	Area of new brick/stonework
	Efflorescence
	Frost damage

All Dimensions in mm

Morter loss to 20mm Arch No.3 Mortar loss to 30mm Spelling to 20mm Damaged brickwork Children Children Ó A Co Morter loss to 50mm Morter loss to 30mm Arch No.2 Missing brickwork Morter loss to 20mm Opposition of the same of the Arch No.1 Missing brickwork

WEST ELEVATION

En County County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

County

C

TATION AND CES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD, CM1 1QH Telephone 01245 482211

SOLES

BEHOLEN ESCEND BHILLIAM GROSSO GITTENT GROWTS 色 12/80 12/80 DOTE 12/ POS INVENEZA / 1888 / App. Ē

ARIES RAIL PROPERTY LTD BRIDGES STOW MARIES HALT, STOW MARIES ELEVATION DEFECTS

DEMINIO NO. A1877/DWGS/1658/figO4

E Pier 2 General graffit, staining and morter loss to 10mm ECC Bridge No. 1658 Rail Property Board No. WFM/836 Morter loss across bernel to 30mm Morter loss to 10mm Arch Berrel (plen vlew) General graffti All Dimensions in mm South abutment General graffiti and staining Spelling to 5mm **Missing brick** Morter loss to 10mm Notes: · 断 Spelling to 30mm Morter loss to 20mm Weephote Ground Level DO NOT SCALE Ground Level Spalling to 10mm Weapholes 00 C*2mm in morter Mortar loss to 10mm Z ₹ 3 Pler t General graffitt and mortar loss to 10mm Spalling to 30mm Pier 2 General graffiti and staining **Missing brick** General soot staining Arch Bernel (plan view) Morter loss to 15mm Morter loss to 15mm Ground Level Ground Law Missing brick E 3 North abutment General leaching and mortar loss to 10mm General graffitt, steining and mortar loss to 10mm Mortar tosa to 10mm Morter loss to 20mm E Arch Barrel (plan view) General graffti W Pler 1 General and mor Veephole **"** Spalling to 6mm \mathbb{Z} Ground Level Ground Level Ø 7 ∐ **≯** ₹

Weephole

Missing brick

Weepholes

ARCH 1

North Arch

ARCH 2

Central Arch

South Arch STOW MARIES HALT, STOW MARIES ARCH SOFFIT, PIER AND ABUTMENT FACE DEFECTS DESCRIPTION OF DIVIDIO

ARCH 3

ECC ASSESSMENT CONTRACT 3
RAIL PROPERTY LTD BRIDGES THE STORE I P I SHIP

ATION AND

COUNTY HALL CHELKSTOND. CM1 10H

SE INVARIATY (BESUNDS Ě

DIMENS NO. A1877/DWGS/1658/RG05

ECC Bridge No. 1658 Rail Property Board No. WFM/836 DO NOT SCALE

Notes:

All Dimensions in mm

Movement of coping bricks by 50mm outwards

C.Smm General Defect: Mortar loss of 10mm to both parapets

EAST PARAPET (CARRIAGEWAY FACE)

WS/Atkins FATION AND
ES,
ENVIRONMENTAL SERVICES DIRECTORATE,
COUNTY HALL, CHELMSFORD. CM1 10H
Telephone 01245 492211

C40 H-\41877\1868\1906

CHECKED NUTHORISED DESCRIPTION OF DIVARRIO SURVEYED LEVELLED DESIGNED DOMENATINGED

DW DW SD

12/89 12/89 01/00 INTIALS DW DATE 12/ REVISION NOTES

WEST PARAPET (CARRIAGEWAY FACE)

CH5mm

STOW MARIES HALT, STOW MARIES PARAPET DEFECTS

ECC ASSESSMENT CONTRACT 3
RAIL PROPERTY LTD BRIDGES

DROWNTHIS NO. ALT 877/DWGS/1658/fig06

APPENDIX C

Statutory Undertakers

New Roads and Street Works Act (NRSWA) notices have been issued to the following companies. The responses are summarised below:

Company	Service
Anglian Water	No existing plant within the vicinity of the bridge.
British Telecom	No existing plant within the vicinity of the bridge.
Cable & Wireless	No existing plant within the vicinity of the bridge.
Transco	No existing plant within the vicinity of the bridge.
Eastern Electricity	No existing plant within the vicinity of the bridge.
Energis	No existing plant within the vicinity of the bridge.
National Grid	No existing plant within the vicinity of the bridge.
Street Lighting	No existing plant within the vicinity of the bridge.
Essex and Suffolk Water	Distribution main in the west verge.
Environment Agency	No comment.

ESSEX COUNTY COUNCIL ASSESSMENT CONTRACT 3

ASSESSMENT REPORT FOR THE ASSESSMENT OF STOW MARIES HALT BRIDGE

ECC BRIDGE NO. 1658 RAIL PROPERTY Ltd BRIDGE NO. WFM/836

Essex County Council Transportation and Operational Services Division County Hall Chelmsford Essex

CM1 1QH

Rail Property Ltd Room C5 Hudson House York YO1 6HP WS Atkins Consultants - Essex Threadneedle House 9 - 10 Market Road Chelmsford Essex CM1 1JQ

Copy No. 1 Version No. 1.0

Structure: Stow Maries Halt Bridge

Date: May-2000

Assessment Report Index

Section	Description	Page No.
	Executive Summary	
	Form BA	
	Form BAA	
1	Introduction	1
2	Conclusions of Inspection Report	2
3	Assessment Methods and Findings	3
4	Conclusions	4
	Appendix A Summary Results Table	
	Appendix B Assessment Calculations	
	Appendix C Approval in Principle and Inspection for Assessment	

Structure: Stow Maries Halt Bridge

Date: May-2000

EXECUTIVE SUMMARY

Stow Maries Halt Bridge, south of the village of Stow Maries in Essex, has been assessed in accordance with the Approval in Principle dated 27 March 2000. This is situated in appendix C of this report.

The structure consists of three square span brick arches supported on brick abutments and piers. The arches have clear spans of 7.81m, 7.76m, 7.83m. The parapets are brick. There is no weight restriction on the structure.

Overall the structure is in fair condition.

The results for the whole structure are based on the MULTI mechanism method computer program. Results for the individual arches are based on the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. The abutments, wing walls and foundations have been assessed qualitatively.

OVERALL STRUCTURAL CAPACITY

40 TONNES

The load carrying capacity of the main structural elements is listed below.

Spans 1 to 3

Arches:

40 Tonnes Assessment Live Loading

Piers:

40 Tonnes Assessment Live Loading

Sub-structures, foundations, wingwalls and spandrel walls:

A qualitative assessment of the abutments, foundations and wingwalls indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment.

Strengthening Requirements

No strengthening measures are required.

FORM 'BA' (BRIDGES)

GC/TP0356

Appendix: 5 Issue: 1 Revision: A Date: Feb 93

CERTIFICATION FOR ASSESSMENT CHECK

STRU	JCTURE / LINE NAME	STOW MARIES HALT	CATEGORY OF CHECK	2
ELR.	STRUCTURE NO	WFM/836		
I cert	ify that reasonable profes ture with a view to securing	sional skill and care have b g that:	een used in the assessment of	f the above
(1)	It has been assessed in a on Form AA approved on		in Principle (where appropriate)	as recorded

(2) It has been checked for compliance with the following principle British Standards, Codes of Practice and Assessment standards. (SEE TAS SCHEDULE IN AIP)

List any departures from the above and additional methods or criteria adopted, with reference and justification for their acceptance (commenting on the results if appropriate). NONE

CATEGORY 1

CATEGORY 1			
	RESCOR	\	29 March 2000
	BESSOR)	29 Watch 2000
	SESSME	NT CHECKER)	29 March 2000
	SINEERS	OF THE FIRM TO WHOM T RESPONSIBLE	OF CONSULTING THE ASSESSOR /
	UST ALS	SO BE SIGNED)	
	SESSOR)	29 March 2000
	ECTOR SINEERS	OF THE FIRM TO WHOM TH	OF CONSULTING HE ASSESSOR IS
	PONSIB	LE	
	PONSIB		29 March 2000
	PONSIB SESSME ECTOR	NT CHECKER) OF THE FIRM TO WHOM	OF CONSULTING

FORM 'BAA' (BRIDGES)

No weight restriction is required.

GC/TP0356

Appendix: 6 Issue: 1 Revision: A Date: Feb 93

CERTIFICATION FOR ASSESSMENT CHECK

NOTIFICATION OF ASSESSMEN	T CHECK		
STRUCTURE NAME / ROAD NO.	STOW MARIES HA	LT BRIDGE	-
LINE NAME	(DISUSED)		_
ELR CODE / STRUCTURE NO.	WFM/836	ESSEX COUNTY CO	UNCIL No. 1658
The above bridge has been assess appended Form BA. A summary of as follows:	sed and checked in of the results of the a	accordance with Standa assessment in terms of o	rds which are listed on the capacity and restrictions i
STATEMENT OF CAPACITY			
		40	tonnes
Critical member/s:		N/A	
RECOMMENDED LOADING RES	STRICTIONS	*	

DESCRIPTION OF STRUCTURAL DEFICIENCIES AND RECOMMENDED STRENGTHENING

Structure: Stow Maries Halt Bridge

Date: May-2000

1.0 INTRODUCTION

- 1.1 Essex County Council (ECC) entered into an agreement with Rail Property Ltd to assess Rail Property Ltd owned bridges carrying publicly maintainable highways. WS Atkins Consultants Ltd Essex (WSAE) have been appointed by ECC to carry out the visual inspections and assessments of the bridges.
- 1.2 An Approval in Principle document was submitted and approved on 27 March 2000. This includes a detailed inspection for assessment report. This assessment report should be read in conjunction with the Approval in Principle and Inspection for Assessment Report.
- 1.3 An inspection of the structure was carried out on 03 December 1999. The inspection included a visual inspection and dimension survey to confirm structural details. The weather was dry, overcast and cold during the inspection. The results of the inspection are presented in the inspection for assessment report which forms part of the Approval in Principle dated 27 March 2000.
- 1.4 A summary of the inspection report findings are listed in section 2 of this assessment report. This includes details of the defects to the bridge which affect the load carrying assessment of the structure.
- 1.5 Stow Maries Halt Bridge carries an unclassified road over a dismantled railway to the south of the village of Stow Maries in Essex OS Ref. TQ 583510 199144.
- 1.6 The structure consists of three square span brick arches supported on brick abutments and piers. The arches have clear spans of 7.81m, 7.76m, 7.83m. The parapets are brick.
- 1.7 The carriageway width varies between 2.9m and 3.7m. The east grass verge varies between 1.8m and 2.2m wide and the west grass verge varies in width between 2.2m and 2.75m. The vertical alignment of the carriageway rises steadily from the southern end with a slight hog curve approximately in the centre of the bridge. The horizontal alignment is straight.
- 1.8 There is no weight restriction on the structure.

Structure: Stow Maries Halt Bridge

Date: May-2000

2.0 CONCLUSIONS OF INSPECTION REPORT

Details of the key dimensions of the structure are shown on drawings AI1877/DWGS/1658/FIG 01, Fig 02 and FIG 03. These are included in the Approval in Principle document.

Details of the defects in the structure are shown on drawings AI1877/DWGS/1658/FIG 04 to FIG 06. These are situated in the inspection for assessment report which forms an appendix to the Approval in Principle.

The following is a summary of the defects listed in the inspection for assessment report.

- 2.1 Overall, the bridge is generally in fair condition.
- 2.2 Based on a visual inspection and the recommendations of BA 16/97 Annex D, the following factors for the Modified MEXE Method were adopted:

		Arch no. 1 (North)	Arch no. 2 (Central)	Arch no. 3 (South)
Condition Factor	F_{cM}	0.9	0.9	0.9
Barrel Factor	$F_{\mathbf{b}}$	1.0	1.0	1.0
Fill Factor	$\mathbf{F_f}$	0.7	0.7	0.7
Width Factor	$F_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	F_{mo}	0.9	0.9	0.9
Depth Factor	F_d	0.8	0.8	0.8

For alternative analysis by the ARCHIE and MULTI computer programs, the overall condition factor F_c , based on the above factors and the recommendations of BD 21/97 6.21, has been adopted.

These factors were decided upon by the Engineer based on the inspection and the Standards listed in the Approval in Principle.

- 2.3 For the assessment, axle lift-off should be considered.
- 2.4 Backing material has been assumed above the intermediate piers and abutments to levels indicated on Rail Property Ltd drawings 5A/13A/836/1, referenced in Section 4 of the Inspection for Assessment report.
- 2.5 The weathered and eroded areas of brickwork should be monitored during routine inspections and repairs carried out, as their condition becomes critical. All cracking to the structure should be monitored and repaired as necessary.
- 2.6 The abutments, wing walls and foundations showed little signs of distress and were assumed to be in sound condition.

Structure: Stow Maries Halt Bridge

Date: May-2000

3.0 ASSESSMENT METHODS AND FINDINGS

3.1 The assessment of Stow Maries Halt Bridge, south of the village of Stow Maries in Essex, has been carried out in accordance with the approval in principle dated 27 March 2000. The following drawings, included in the Approval in Principle document have been used.

AI1877/DWGS/1658/FIG 01 AI1877/DWGS/1658/FIG 02

Plan

AI1877/DWGS/1658/FIG 03

Cross section

Elevations

3.2 The following assumptions have been made regarding material strengths.

Masonry Strength

4.4 N/mm2

3.3 Detailed results tables are situated in appendix A of this assessment report. Copies of the assessment calculations are situated in appendix B.

ARCHES

- 3.4 The individual arches have been analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches.
- 3.5 For the assessment axle lift-off has been considered.
- 3.6 Backing has been assumed above the intermediate piers and abutments as discussed in Section 2 of this report.
- 3.7 The arches were assessed at 40 TONNES Assessment Live Loading.

INTERMEDIATE PIERS

- 3.8 The whole structure was analysed as a multi span arch using the MULTI mechanism method computer program.
- 3.9 The piers were assessed at 40 TONNES Assessment Live Loading.

ABUTMENTS, WING WALLS AND FOUNDATIONS

3.10 A qualitative assessment of the abutments, wing walls and foundations indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment.

Structure: Stow Maries Halt Bridge

Date: May-2000

4.0 CONCLUSIONS

4.1 Stow Maries Halt Bridge, south of the village of Stow Maries in Essex, has been assessed in accordance with the Approval in Principle dated 27 March 2000.

4.2 The results for the whole structure are based on the MULTI mechanism method computer program. Results for the individual arches are based on the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. A summary of the results is listed below.

4.3 Spans 1 to 3

Arches:

40 tonnes

Piers:

40 tonnes

Parapets:

The parapets do not conform to current standards and have not

been assessed.

4.4 Abutments, wing walls and foundations

A qualitative assessment of the abutments, wing walls and foundations indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment. Spandrel walls are assessed also at 40 Tonne.

4.5 The inspection for assessment showed that the structure requires minor maintenance. Details are included in section 6 of the inspection report.

4.6 Strengthening Requirements

No strengthening measures are required.

Structure: Stow Maries Halt Bridge

Date: May-2000

APPENDIX A

SUMMARY RESULTS TABLES

Rail Property Ltd

ECC Bridge Assessment Contract No. 3

Rail Property Bridge No. WFM/836

ECC Bridge No. 1658

Structure: Stow Maries Halt Bridge

Date: May-2000

Analysis Results: Masonry Arch Analysis.

Span Refer	rence	North Arch	North Arch	Central Arch	Central Arch
Method Us	sed	MEXE	ARCHIE/ MULTI	MEXE	ARCHIE/ MULTI
Single Spar	n Analysis – No Axle Lift	<u>Off</u>			
Allowable	Single Axle Load	33.3t	>11.5t	32.9t	>11.5t
Axle	Double Axle Load	22.2t	>10t	21.9t	>10t
Loads	Triple Axle Load	20.6t	>8t	20.4t	>8t
Single Spar AAL	n Analysis – Axle Lift Off Double Axle Load	16.7t	>11.5t	16.4t	>11.5t
Multi Span	Analysis (Assuming Slen	der Piers)			
Overall Gl	obal Capacity	N/A	40t	N/A	40t
			· .	/	
Maximum	Gross Vehicle Weight	40t	40t	40t	40t
Assessmer	nt Live Load Rating	40t	40t	40t	40t

Comments

HB Rating

- Axle lift off has been considered.
- Backing material has been assumed above the intermediate piers and abutments to levels indicated on Rail Property Ltd drawings 5A/13A/836/1, referenced in Section 2 of the Inspection for Assessment report.

N/A

N/A

N/A

N/A

Structure: Stow Maries Halt Bridge

Date: May-2000

Analysis Results: Masonry Arch Analysis.

C D - C		South Arch	South Arch		1
Span Referen	ice	South Arch	South Arch		
Method Used	1	MEXE	ARCHIE/		
			MULTI		
Single Span A	Analysis – No Axle Lift	Off			
Allowable	Single Axle Load	25.7t	>11.5t	!	
Axle	Double Axle Load	17.1t	>10t		
			 		
Loads	Triple Axle Load	15.9t	>8t		
Single Span A	Triple Axle Load Analysis – Axle Lift Off Double Axle Load		>8t >11.5t		
Single Span A	Analysis – Axle Lift Off	12.8t			
Single Span A	Analysis – Axle Lift Off Double Axle Load nalysis (Assuming Slen	12.8t			
Single Span A AAL Multi Span A	Analysis – Axle Lift Off Double Axle Load nalysis (Assuming Slen	12.8t der Piers)	>11.5t		
Single Span A AAL Multi Span A Overall Glob	Analysis – Axle Lift Off Double Axle Load nalysis (Assuming Slen	12.8t der Piers)	>11.5t		

Comments

HB Rating

- Axle lift off has been considered.
- Backing material has been assumed above the intermediate piers and abutments to levels indicated on Rail Property Ltd drawings 5A/13A/836/1, referenced in Section 2 of the Inspection for Assessment report.

N/A

N/A

Structure: Stow Maries Halt Bridge

Date: May-2000

APPENDIX B

ASSESSMENT CALCULATIONS

WS/Atk	CALCULATION INDEX		
PROJECT	ECC ASSESSMENT CONTINCT]	≑ GaldalaŭQie → Skeitāa → Traja	
Problecti	CTOW MARIES MALT DOLOGE_		
		lateta	
FILENOA		FROTE AVAILORERO	OVATILE TO
INDEX NO	JUMMARY	JF	2/00
2-5	ARCH ANALYSIS DATA	JF JF	2/00
6	NONTH PINCH - MEXE	JF	2/00
7	(ENTRIM MARCH - MEYE	JF	2/00
₹	South Arch - MEXE	UF	2/00
9-10	MEXE SUMMARY	7ل	2/00
13-24	ARCHIE MACHIU ARCHIE MATPUT DATA	JF	2/00
25-24	MULTI ANALYSIJ	JF:	2/00
21-21			
			<u></u>
		 	
		,	
		,	
		. •	
		Continued on Sheet	
	(JULIE IN THE COLUMN TO THE CE	L

Axle lift-off will be considered.

AND

OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD, CM1 1QH Telephone 01245 492211

ECC Bridge No. 1658
Rail Property Board No. WFM/836

ARCH No.1 (NORTH ARCH) IDEALISATION DIAGRAM NTS

STOW MARIES HALT, STOW MARIES
IDEALISATION DIAGRAM ARCH 1

	DRWG.NO. AI1877/	1658/fig07
	CAD NO. N:1877/	′1658/fig07
	SCALES NTS	
	DATE JAN 00	DRAWN/TRACED SD
	DATE JAN 00	CHECKED DW
i la de la como de la	DATE	AUTHORISED

OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD. CM1 1QH Telephone 01245 492211

ECC Bridge No.

1658

Rail Property Board No. WFM/836

Backing level

| 100mm Surfacing | 100mm Surfaci

ARCH No.2 (CENTRAL ARCH) IDEALISATION DIAGRAM NTS

STOW MARIES HALT, STOW MARIES IDEALISATION DIAGRAM ARCH 2

	DRWG.NO. AI1877/	1658/fig08
	CAD NO. N:1877/	1658/fig08
	SCALES NTS	
	DATE JAN 00	DRAWN/TRACED SD
	DATE JAN 00	CHECKED DW
	DATE	AUTHORISED

OPERATIONAL SERVICES, ENVIRONMENTAL SERVICES DIRECTORATE, COUNTY HALL, CHELMSFORD, CM1 1QH Telephone 01245 492211

ECC Bridge No. 1658
Rail Property Board No. WFM/836

ARCH No.3 (SOUTH ARCH) IDEALISATION DIAGRAM NTS

SCHEME TITLE ECC	ASSESSMENT CONTRACT 3	
	MARIES HALT, STOW MARIES	
	LISATION DIAGRAM ARCH 3	

DRWG.NO. AI1877	/1658/fig09
CAD NO. N:1877	/1658/fig09
SCALES NTS	
DATE JAN 00	DRAWN/TRACED SD
DATE JAN 00	CHECKED DW
DATE	AUTHORISED

ARCH ASSESSMENT TO MODIFIED MEXE

Structure Name: STOW MARIES HALT - NORTH

1. DIMENSIONS

2. PROVISIONAL ASSESSMENT LOADING

Q.

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{7.810}{1.500} = \frac{5.21}{(\text{Fig. 3/3})}$$

4. PROFILE FACTOR

$$\frac{\text{rq}}{\text{rc}} = \frac{1.210}{1.500} = \frac{0.8 | \text{(Fig. 3/4)}}{1.500}$$

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \underbrace{(Fb.d) + Ff.h}_{d+h} = \underbrace{\left(| \cdot O \times O \cdot S \cdot 9 \right) + \left(0 \cdot 7 \times O \cdot S \cdot 1 \right)}_{O \cdot S \cdot 9 + O \cdot S \cdot 1} \qquad Fm = \underbrace{O \cdot 86}_{O \cdot 86}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 0.9 \times 0.8 \times 0.9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

Tonne

11. CONCLUSIONS:

ADEQUATE CAPACITY FOR Assessed By:

an agen, dagagag masake a

Signed:

· 1945年 · 1985年 · 1985年 · 1986年 · 198

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: STOW MARIES - CENTRAL

1. DIMENSIONS

$$L = \frac{7.75S_m}{rc}$$

$$rc = \frac{1.52S_m}{1.230_m}$$

$$rd = \frac{1.230_m}{1.230_m}$$

$$d = 0.590$$

$$h = 0.490$$

$$1+d=\frac{\sqrt{80}}{\sqrt{80}}$$

2. PROVISIONAL ASSESSMENT LOADING

PAL =
$$60.2$$
 Tonne

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{7.755}{1.525} = \frac{5.09}{5.09} \text{ (Fig. 3/3)}$$

$$Fsr = 0.84$$

4. PROFILE FACTOR

$$rq = \frac{1.230}{1.525} = \frac{0.81}{0.81}$$
 (Fig. 3/4)

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \underline{(Fb.d) + Ff.h} = \underline{(0.0 \times 0.59) + (0.7 \times 0.49)}$$

$$0.59 + 0.49$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 0.9 \times 0.8 \times 0.9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

11. CONCLUSIONS:

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: STOW MANIES

1. DIMENSIONS

$$L = 7.830m$$

$$rc = 1.510m$$

$$rq = 1.220m$$

$$d = 0.590m$$

$$h = 0.370m$$

$$h + d = 0.960$$

2. PROVISIONAL ASSESSMENT LOADING

(Fig. 3/1)

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{7.830}{1.510} = \frac{5.19}{(\text{Fig. 3/3})}$$

4. PROFILE FACTOR

$$\frac{\text{rq}}{\text{rc}} = \frac{|\cdot 270|}{|\cdot 510|} = \frac{|0\cdot8|}{|\cdot 510|} \text{(Fig. 3/4)}$$

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \underbrace{(Fb.d) + Ff.h}_{d+h} = \underbrace{\left(1.0 \times 0.59\right) + \left(0.7 \times 0.370\right)}_{0.590} Fm = \underbrace{0.88}_{0.590}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 0.9 \times 0.7 \times 0.9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

Tonne

11. CONCLUSIONS:

Pon. CAPACITY AIDEQUIATE Assessed By Signed

יון יעיר רופע ז נעפר. נים

		Part of structure		CONTRA	9C1 3	A 1 1877 /72 Calc sheet no rev
		Drawing ref		alc by	Date 2 /00	Check by Date
Ref		Calculati	ons			Output
	MEXE PAVAL	711	•	:		
	CENTRAL ARC	 				
	lood are	MAL	Af	Albuahl	L Ash Lond	
, , ,	Single Asle	21.9	02.1	3.	2.9t	
Jo LHV	Double Aile	21.9	1.00	2	1.9t	
	Single Acle Double Asle Triple Acle	21.9	0.93	2	D-64	
uft off	Double Ark	21.9	0.75	18	5.4t	
1 2 3 1 1	! Max grow	which weight	= 40 h	onnes.		
	SOUTH ARCH	_		,		
	Loud cose	MAL	At	Albourble	All Lood	
	Single Arle	17.1	1.50	2	2s.7E	
Off {	Double Arle	17.1	1.00	I	7.1E	
	Loud core Single Arle Double Arle Triple Arle	17.1	0.93)	S.9E	
LfroH	Double Ask	17.1	0.75	}	7.8E	
	i. Max grows	while way he	L - 40 h	enn-lo.		
				· ·		

and the second of the second o

Aph of All at crown = 0.370m

Factored Lane width = (1.8 + 1.5 + 0.370) x 0.59

= 2.165m

SAL-042 Hev 1 Uec. 89

WS/Atkins Project Job ref STOW MARIE Drawing ref Date Check by Calc by 2/00 JF Output Ref Calculations ARCHIE REJULTS NLK 1.41 1.36 N. Lift Off 1.52 1.50 1.42 1.56 1.60 1.48 Ptt off 1.36 1.27 1.34 Weight Copacity

-U42 Hev 1 Dec 89

Nortarch

()	NOTES	al CII	
Span Depth of fill Ring depth Position of backing	7810 mm 510 mm 590 mm 4	1 3	1500 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge	2248mm 396 mm 267 kN/m 280 kN/m	V Right	1.49 280 kN/m 175 kN/m .3
Hinges 1 AT 1	2 AT 7	3 AT 14	4 AT 21

		Vertical				Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.9	0	0	0	0
2	-5.6	-13.1	0	0	0	0
3	-5.6	-11.6	0	0	0	0
4	-5.6	-10.1	0	-3.3	0	0
5	-5.6	-8.6	1.8	-29.1	4.1	0
6	-5.6	-7.5	1.3	-59.6	6.8	0
7	-5.6	-6.5	.8	~56	4.9	0
8	-5.6	-5.6	. 5	-21.3	1.3	0
9	-5.6	-5.1	.3	8	0	0
10	-5.6	-4.8	.1	0	0	0
11	-5.6	-4.8	1	0	0	0
12	-5.6	-5.1	3	0	0	1
13	- 5.6	-5.6	5	0	0	3
14	-5.6	-6.5	8	0	0	7
15	-5.6	-7.5	-1.3	0	0	-1
16	-5.6	-8.6	-1.8	0	0	-1.4
17	-5.6	-10.1	0	0	0	0
18	~5.6	-11.6	0	0	0	0
19	-5.6	-13.2	0	0	0	0
2.0	-5 4	-13 9	Λ	n	Ω	0

Nortarch

	1101 01	** 011	
() Span Depth of fill Ring depth Position of backing	7810 mm 510 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1500 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	2248mm	-	1.52 259 kN/m 325 kN/m .3
Hinges	8 T <i>I</i>	3 AT 15	4 AT 21

Param(m	n).segmer	nt				
			Horizontal			
	Weight	Dead Load	Deadload	Live Load	Live Load	
1	-5.4	-13.9	0	0	0	0
2	-5.6	-13.1	0	0	0	0
3	-5.6	-11.6	0	0	0	0
4	-5.6	-10.1	0	0	0	0
5	-5.6	-8.6	1.8	0	0	1.4
6	-5.6	-7.5	1.3	0	0	1
7	-5.6	-6.5	.8	0	0	. 7
8	-5.6	-5.6	. 5	0	0	.3
9	-5.6	-5.1	. 3	0	0	. 1
10	-5.6	-4.8	.1	0	0	0
11	-5.6	-4.8	1	0	0	0
12	-5.6	-5.1	3	4	0	0
13	-5.6	-5.6	- .5	-16.1	-1	0
14	-5.6	-6.5	8	-46.4	-4	0
15	-5.6	-7.5	-1.3	-53.2	-6.1	0
16	-5.6	-8.6	-1.8	-33	-4.7	0
17	-5.6	-10.1	0	-15.6	0	0
18	-5.6	-11.6	0	-16.3	0	0
19	-5.6	-13.2	0	~17.5	0	0
20	-5.4	-13.9	0	-14.3	0	0

The transfer of the second second

No	rt	ar	$^{\mathrm{ch}}$

()	NOTE	aren	
Span Depth of fill Ring depth Position of backing	7810 mm 510 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1500 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge:	2248mm 370 mm 308 kN/m ,191 kN/m	H Right V Right	1.6 295 kN/m 342 kN/m
Hinges 1 AT 1	2 AT 7	3 AT 15	4 AT 21

Param(m	n).segme	nt				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load			Live Load	
1	-5.4	-13.9	0	0	0	0
2	-5.6	-13.1	0	0	0	Ō
3	-5.6	-11.6	0	0	0	0
4	-5.6	-10.1	0	0	0	0
5	-5.6	-8.6	1.8	0	0	1.4
6	-5.6	-7.5	1.3	0	0	1
7	-5.6	-6.5	.8	0	0	.5
8	-5.6	-5.6	. 5	0	0	.2
9	-5.6		.3	0	0	.1
	-5.6	-4.8	.1	5	0	0
11	-5.6	-4.8	1	-13.1	2	0
		-5.1	3	-29.1	-1.1	0
13		-5.6	5	-27.9	-1.7	0
14			8	-33.1	-2.9	0
15		-7.5		-44.4	-5.1	0
16		-8.6		-38.2	-5.4	0
17		-10.1		-23	0	0
18	-5.6			-16.2	0	0
19		-13.2	0	-13.7	0	0
20	~5.4	-13.9	Λ	_Q /	Λ	Λ

The second secon

Nortarch

		Norta	ren	
() Span Depth of fill Ring depth Position of backing		7810 mm 510 mm 590 mm 4	Rise 1500 mm Depth of surfacing 100 mm Ring depth factor 1 Depth of mortar loss 0 mm	
Fill density Surfacing density		19 kN/m ³ 23 kN/m ³	Masonry density 21 kN/m^3	3
Phi for fill		30 deg	Masonry strength 4.4 N/mm	^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge	2	Double Axlo 2248mm 432 mm 280 kN/m 171 kN/m 69 mm	Geometric F.O.S 1.36 H Right 265 kN/m V Right 328 kN/m Factor on pass. press3	
Hinges	2 A'	r 8	3 AT 16 4 AT 21	

Param (m	m).segme	nt	_			امستنائه
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	
1	-5.4		0	0	0	0
2	-5.6		0	0	0	0
3	-5.6		0	0	0	0
4		-10.1	0	0	0	0
5	-5.6		1.8	0	0	1.4
6		-7.5	1.3	0	0	1
7	-5.6		. 8	0	0	.7
8	-5.6		.5	0	0	.3
9.	-5.6		.3	0	0	.1
10	-5.6		.1	0	0	0
		-4.8	1	0	0	0
		-5.1	3	Ō	0	0
12		-5.6	5	-3.9	2	0
13			8	-32.3	-2.8	0
14	-5.6		-1.3	-62	-7.1	0
15	-5.6		-1.8	-60.1	-8.6	0
16	-5.6		0	-33	0	0
17	-5.6	_	Ö	-9.8	Ō	0
18	-5.6		0	-6.5	Õ	0
19	-5.6		-	-6.4	Õ	Ô
20	-5.4	-13.9	0	-0.4	•	<u> </u>

()	Cent	arcn	
Span Depth of fill Ring depth Position of backing	7755 mm 490 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1525 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Single Axl 2236mm	e:11.5t at 10970	
Required ring depth H Left V Left Comp. zone at hinge 2	412 mm 257 kN/m ,278 kN/m 65 mm		1.43 274 kN/m 173 kN/m .1
Hinges 1 AT 1 2	AT 7	3 AT 14	4 AT 21

	, . b c gc.	446				
		Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Dace Dress
1	-5.4	-13.8	0	0	0	U Lass Liess
2	-5.6	-13	0	0	0	0
3	-5.6	-11.5	0	ñ	0	0
4	-5.6	-10	Ō	-2.6	0	0
5	-5.6	-8.6	1.9	-27.2	4	0
6	-5.6		1.3	-59.1	6.9	0
7	-5.6	-6.3		-57.9	5.2	0
8	-5.6		.5	-23.3	1.5	0
9	-5.6	-5	.3	-1	0	0
10	-5.6	-4.7	.1	0	0	0
11	~5.6	-4.6	1	0	0	0
12	-5.6		3	0	0	0
13	-5.6		5	0	0	0
14		-6.2	8	0	0 .	0
15	-5.6		-1.3	0	0	0
16	-5.6		-1.8	0	0	0
17	-5.6		0	0	0	0
18	-5.6		ő	0	0	0
19	-5.6		ñ	0	0	0
20		-13.4	0	0	0	Ü
	- · -		v	U	U	0

	Centa	arcn	
() Span Depth of fill Ring depth Position of backing	7755 mm 490 mm 590 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1525 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	Double Axl 2236mm 394 mm 261 kN/m 170 kN/m 62 mm	V Right	1.5 248 kN/m 322 kN/m .3
Hinges 1 AT 1 2 A	AT 8	3 AT 15	4 AT 21

·		Vertical	Horizontal			
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.8	0	0	0	0
2	-5.6	-13	0	0	0	0
3	-5.6	-11.5	0	0	0	0
4	-5.6	-10	0	0	0	0
5	-5.6	-8.6	1.9	0	0	1.4
6	-5.6	-7.4	1.3	0	0	1
7	-5.6	-6.3	. 9	0	0	. 7
8	-5.6	-5.5	. 5	0	0	. 3
9	-5.6	-5	.3	0	0	1
10	-5.6	-4.7	.1	0	0	0
11	-5.6	-4.6	1	0	0	0
12	-5.6	-4.9	3	2	0	0
13	-5.6	-5.4	5	-14	9	0
14	-5.6	-6.2	8	-45.2	-4.1	0
15	-5.6	-7.1	-1.3	-54.3	-6.4	0
16	-5.6	-8.3	-1.8	-34.6	-5	0
17	-5.6	-9.6	0	-15.7	0	0
18	-5.6	-11.2	0	-16	0	0
19	-5.6	-12.7	0	-17.5	0	0
20	-5.4	-13.4	0	-14.6	0	0

()	Centra	RI CII	
Span Depth of fill Ring depth Position of backing	7755 mm 490 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1525 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Triple Axl 2236mm	e:24t:No Lift-off at 1047	70
Required ring depth H Left V Left Comp. zone at hinge 2	377 mm 268 kN/m ,341 kN/m 67 mm	H Right V Right	1.56 280 kN/m 179 kN/m .3
Hinges	.m 7	ኃ አጥ ገለ	4 NM 03

raram (m	m, segmen	11-				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight		Deadload			Pass Press
1	-5.4	-13.8	0	-11.1	0	0
2	-5.6	-13	0	-14.1	0	0
3	-5.6	-11.5	0	-19.5	0	0
4	-5.6	-10	0	-32.9	0	0
5	-5.6	-8.6	1.9	-42.6	6.2	0
6	-5.6	-7.4	1.3	-36.6	4.3	0
7	-5.6	-6.3	.9	-29.3	2.6	0
8	~5.6	-5.5	.5	-29.8	1.9	0
9	-5.6		.3	-21.1	. 8	0
10	-5.6	-4.7	.1	-3.5	0	Ö
11	-5.6	-4.6	1	0	0	Ō
12	-5.6	-4.9	3	0	0	1
13	-5.6	-5.4	5	0	0	3
14	-5.6	-6.2	8	0	. 0	7
15	-5.6	-7.1	-1.3	0	0	-1
16	-5.6	-8.3	-1.8	0	Ō	-1.3
17	-5.6	-9.6	0	0	0	0
18	-5.6	-11.2	0	0	0	Ō
19	-5.6	-12.7	0	0	0	0
20	-5.4	-13.4	0	0	0	n

	Centa	1,011	
() Span Depth of fill Ring depth Position of backing	7755 mm 490 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1525 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	2236mm 439 mm 268 kN/m 169 kN/m	e:20.3t:Right Lift-off at Geometric F.O.S H Right V Right Factor on pass. press.	1.34 253 kN/m 326 kN/m
Hinges	2 AT 8	3 AT 16	4 AT 21

Param	(mm)	.seament

T CAT CALL / III.	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4		0	0	0	0
2	-5.6		0	0	0	0
3	-5.6		ŏ	Ō	0	0
4	-5.6		Ŏ	0	0	0
5		-8.6	1.9	Ó	0	1.4
6		-7.4	1.3	0	0	1
7		-6.3	. 9	0	0	. 7
8		-5.5		0	0	.3
9	-5.6		. 3	0	0	.1
10		-4.7	.1	Ò	0	0
		-4.6	1	0	0	0
		-4.9		0	0	0
		-5.4		-2.8	2	0
		-6.2		-29.6	-2.7	0
		-7.1		-61.3	-7.2	0
		-8.3		-62.1	-9	0
		-9.6	0	-35.2	0	0
18	-5.6			-10.5	0	0
19	-5.6		Ö	-6.3	0	0
20	-5.4	-13.4	Ö	-6.4	0	0

()	DOGC.	arch	
Span Depth of fill Ring depth Position of backing	7830 mm 370 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	Single Axl 2165mm 435 mm 232 kN/m 287 kN/m 60 mm	H Right	1.36 246 kN/m 153 kN/m .3
Hinges 1 AT 1 2 A	AT 6	3 AT 13	4 AT 21

4 AT 21

raram (no	1/ seduct	IL.				
		Vertical	Horizontal	Vertical	Horizontal	Additional
		Dead Load	Deadload	Live Load	Live Load	Dage Drees
1	-5.4	-13.4	0	0	0	U LIGSS
2	-5.6	-12.6	0	Ô	Ô	0
3	-5.6	-11	0	-8	0	0
4	-5.6	-9.3	0	-35.7	0	0
5	-5.6	-7.8	1.7	-59.6	8.5	0
6	-5.6	-6.6	1.1	-52.6	6.1	
7		-5.5	.7	-20	1.8	0
8	-5.6	-4.6	.4	8		0
9		-4	.2	0	.1 0	. 0
10	-5.6	-3.6	.1	0	0	0
11	-5.6		1	0	0	0
1.2	-5.6		2	0	0	0
13	-5.6	-4.3	4	0	0	1
14		~5.1	7	0	0	3
15		-6.1	-1.1	0	0	5
16	-5.6	-7.2		0	0	8
17	-5.6	-8.7	-1.6 0	0	0	-1.1
18		-10.3	0	0	0	0
19		-11.8	0	U	O .	0
20	-5.4	-12.7	0	U	0	0
	ン・ せ	- 14 . /	U	O	Λ	Δ

//	Souta	irch	
() Span Depth of fill Ring depth Position of backing	7830 mm 370 mm 590 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	2165mm		1.42 251 kN/m 322 kN/m
Hinges	т в	3 ልሞ 15	4 AT 21

Daram	(mn)	coment

Param (mi/.segme	110				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.4	0	0	0	0
2	-5.6	-12.6	0	0	0	0
3	-5.6	-11	0	0	0	0
4	-5.6	-9.3	0	0	0	0
5	-5.6	-7.8	1.7	0	0	1.2
6	-5.6	-6.6	1.1	0	0	. 9
7	-5.6	-5.5	.7	0	0	.6
8	-5.6	-4.6	. 4	0	0	. 2
9	-5.6	-4	.2	0	0	.1
10	-5.6	-3.6	.1	0	0	0
11	-5.6	-3.6	1	0	0	0
12	-5.6	-3.8	2	0	0	0
13	-5.6	-4.3	4	-14.1	9	0
14	-5.6	-5.1	7	-52.2	-4.6	0
15	-5.6	-6.1	-1.1	-59.6	-6.9	0
16	-5.6	-7.2	-1.6	-30.4	-4.3	0
17	-5.6	-8.7	0	-13.6	0	0
18	-5.6	-10.3	0	-18.3	0	0
1.9	-5.6	-11.8	0	-19.6	0	0
20	-5 4	-12 7	n	-15.5	0	0

()			
Span Depth of fill Ring depth Position of backing	7830 mm 370 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	2165mm 398 mm 267 kN/m	e:24t:No Lift-off at 193 Geometric F.O.S H Right V Right Factor on pass. press.	1.48 280 kN/m 171 kN/m
Hinges	AT 7	3 AT 14	4 ልጥ 21

Param(m	n).segmer	it				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1.	-5.4	-13.4	0	-11.9	0	0
2	-5.6	-12.6	0	-15.2	0	0
3	-5.6	-11	0	-20	0	0
4	-5.6	-9.3	0	-34.9	0	0
5	-5.6	-7.8	1.7	-45.7	6.5	0
6	-5.6	-6.6	1.1	-37.8	4.4	0
7	-5.6	-5.5	. 7	-28.5	2.5	0
8	-5.6	-4.6	. 4	-32.3	2	0
9	~5.6	-4	. 2	-20.5	. 7	0
10	-5.6	-3.6	. 1	-1.9	0	0
11	~5.6	-3.6	1	0	0	0
12	-5.6	-3.8	2	0	0	1
13	-5.6	-4.3	4	0	0	2
14	-5.6	-5.1	7	0	0	5
15	-5.6	-6.1	-1.1	0	0	8
16	- 5.6	-7.2	-1.6	0	0	-1.1
17	-5.6	-8.7	0	0	0	0
18		-10.3	0	0	0	0
19		-11.8	0	0	0	0
20	-5.4	-12.7	0	0	0	0

4)		Souta	ren	
() Span Depth of fill Ring depth Position of backing		7830 mm 370 mm 590 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm 100 mm 1 0 mm
Fill density Surfacing density		19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill		30 deg	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge	2	Double Axle 2165mm 464 mm 274 kN/m 163 kN/m 67 mm	_	1.27 257 kN/m 323 kN/m .3
Hinges 1 AT 1	2 A	r 9	3 AT 16	4 AT 21

Param (mn'	١.	sec	ment

. •	Vertical	Horizontal	Vertical	Horizontal	Additional
		0	0	0	0
-5.6	-12.6	0	0	0	0
-5.6	-11	0	0	0	0
-5.6	-9.3	0	0	0	0
-5.6	-7.8	1.7	0	0	1.2
-5.6	-6.6	1.1	0	0	. 9
-5.6	-5.5	. 7	0	0	. 6
-5.6	-4.6	. 4	0	0	.3
-5.6	-4	. 2	0	0	.1
-5.6	-3.6	.1	0	0	0
-5.6	-3.6	1	0	0	0
-5.6	-3.8	2	0	0	0
-5.6	-4.3	4	-2.1	1	0
-5.6	-5.1	7	-32.3	-2.8	0
-5.6	-6.1	-1.1	-70.7	-8.2	0
-5.6	-7.2	-1.6	-66.1	-9.5	0
-5.6	-8.7	0	~29.9	0	0
-5.6	-10.3	0	-7.3	0	0
-5.6	-11.8	0	-7.2	0	0
-5.4	-12.7	0	-7.2	0	0
	Weight -5.4 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6	Stone Vertical Weight Dead Load -5.4 -13.4 -5.6 -12.6 -5.6 -9.3 -5.6 -7.8 -5.6 -6.6 -5.6 -5.5 -5.6 -4.6 -5.6 -3.6 -5.6 -3.8 -5.6 -3.8 -5.6 -5.1 -5.6 -6.1 -5.6 -7.2 -5.6 -8.7 -5.6 -10.3 -5.6 -11.8	Stone Vertical Horizontal Weight Dead Load Deadload -5.4 -13.4 0 -5.6 -12.6 0 -5.6 -9.3 0 -5.6 -9.3 0 -5.6 -7.8 1.7 -5.6 -6.6 1.1 -5.6 -5.5 .7 -5.6 -4.6 .4 -5.6 -4.6 .4 -5.6 -3.6 .1 -5.6 -3.6 .1 -5.6 -3.8 2 -5.6 -4.3 4 -5.6 -5.1 7 -5.6 -6.1 -1.1 -5.6 -8.7 0 -5.6 -10.3 0 -5.6 -11.8 0	Stone Vertical Horizontal Vertical Weight Dead Load Deadload Live Load -5.4 -13.4 0 0 -5.6 -12.6 0 0 -5.6 -9.3 0 0 -5.6 -9.3 0 0 -5.6 -9.3 0 0 -5.6 -9.3 0 0 -5.6 -9.3 0 0 -5.6 -9.3 0 0 -5.6 -6.6 1.1 0 -5.6 -5.5 .7 0 -5.6 -4.6 .4 0 -5.6 -4.6 .4 0 -5.6 -3.6 .1 0 -5.6 -3.6 .1 0 -5.6 -3.8 .2 0 -5.6 -4.3 4 -2.1 -5.6 -5.1 7 -32.3 -5.6 -6.1	Stone Vertical Horizontal Vertical Horizontal Weight Dead Load Deadload Live Load Live Load -5.4 -13.4 0 0 0 -5.6 -12.6 0 0 0 -5.6 -11 0 0 0 -5.6 -9.3 0 0 0 -5.6 -9.3 0 0 0 -5.6 -9.3 0 0 0 -5.6 -9.3 0 0 0 -5.6 -6.6 1.1 0 0 -5.6 -6.6 1.1 0 0 -5.6 -4.6 .4 0 0 -5.6 -3.6 .1 0 0 -5.6 -3.6 .1 0 0 -5.6 -3.8 2 0 0 -5.6 -4.3 4 -2.1 1 -5.6 -5.1

The last of the second second

Nortarch.dat

```
Nortarch
 1500
 7810
 20
 590
 1
 4
 21
 19
 30
 1
 602
 4.4
 8000
 0
 0
 100
 23
0,0,2600
328,275,2600
675,524,2600
1040,748,2600
1420,944,2600
1813,1112,2600
2218,1251,2600
2632,1359,2600
3052,1437,2600
3478,1484,2600
3905,1500,2600
4332,1484,2600
4758,1437,2600
5178, 1359, 2600
5592,1251,2601
5997,1112,2601
6390,944,2601
6770,748,2601
7135,524,2602
7482,275,2602
7810,0,2602
centarch
 0
```

Centarch.dat

```
centarch
 1525
 7755
 20
 590
 1
 4
 21
 19
 30
 1
 599
 4.4
 8000
 8.97
 0
 100
 23
0,0,2603
323,279,2604
666,532,2606
1027,760,2607
1404,959,2609
1795,1130,2609
2197,1271,2610
2609, 1382, 2610
3028,1461,2609
3452, 1509, 2608
3878, 1525, 2605
4304, 1509, 2601
4728, 1461, 2597
5147, 1382, 2591
5559, 1271, 2585
5961,1130,2579
6352,959,2572
6729,760,2565
7090,532,2559
7433,279,2552
7756,0,2546
soutarch
-3.485
```

Soutarch.dat

```
soutarch
 1510
 7830
 20
 590
 1
 4
 21
 19
 30
 1
 603
 4.4
 8000
 17.875
 0
 100
 23
0,0,2529
328,276,2524
676,528,2519
1042,753,2513
1423,950,2508
1817,1119,2502
2223,1259,2495
2638, 1368, 2489
3060,1447,2483
3486, 1494, 2476
3915, 1510, 2470
4344,1494,2464
4770,1447,2457
5192,1368,2451
5607,1259,2445
6013,1119,2438
6407,950,2432
6788,753,2427
7154,528,2421
7502,276,2416
7830,0,2411
-3.695
```

The world of the state of the second of the

				·····	
arch width	3.790 m		HB parameters		
Fill Depth	0.966 m				
width2 (2 lanes loaded)	0.000 m		0.000 m		
width1 (1 lane loaded)	3.790 m		3.790 m		
gfi1 (BD 21/97, cl 6.20)	mbrail/#				
gfl2 (BD 21/97, cl 6.20)					
Fcm .	0.900				
Fj	0.650				
g					
		1	HB units	Axle loa	d (kN/m)
Lift-Off Factors (BD 21/97	7, Table 6.2)			1 lane	2 lanes
dlift1*				90.21	0.00
dlift2	3.4.4.6.5.5			135.31	0.00
tlifta1				180.41	0.00
tlifta2*	PROPERTY IN			225.51	0.00
tlifta3				270.62	0.00
tliftb1*				315.72	
			Sand Street Property and Control of the Control of		0.00
tliftb2				360.82	0.00
tliftb3			100 (ARD)	405.93	0.00
* * * * * * * * * * * * * * * * * * *					
AAL (t)			ift Off		-Off
			d (kN/m)		d (kN/m)
		1 lane	2 lanes	1 lane	2 lanes
		173.00	0.00	173.00	0.00
		157.96	0.00	157.96	0.00
AND THE WASHINGTON		135.39	0.00	135.39	0.00
高级的自身/0.76-Avendage		105.31	0.00	105.31	0.00
经验证据证据证据 证据		82.74	0.00	82.74	0.00
NAPP TOTAL		30.09	0.00	30.09	0.00
新作品的(Web)(新作品)	Heavy Axle*	150.44	0.00	192.56	0.00
	Light Axle	84.07	0.00	42.03	0.00
	Ĭ				
AND THE POST OF TH	Heavy Axle*	142.91	0.00	182.93	0.00
	Light Axle	79.86	0.00	39.93	0.00
		·			1111
resolvation de la composition de la co	Heavy Axle*	135,39	0.00	173.30	0.00
	Light Axle	75.66	0.00	37.83	0.00
			*	31133	
	Out Axle 1	67.25	0.00		
A STATE OF PARTY SEASON	Mid Axle 2*	120.35	0.00		
1300	Out Axle 3	67.25	0.00		
1000	Out raile o	07.20	0.00		
	Out Axle 1	63.05	0.00	94.58	0.00
768 #476****	Mid Axle 2*	112.83	0.00	94.58 112.83	0.00
1350	Out Axie 2				
1350	Ont write 2	63.05	0.00	31.53	0.00
	Out Axle 1	EO 44	0.00	75 GC	0.00
COOTA LA	Mid Axle 1	50.44	0.00	75.66	0.00
6 00 TA (a)	1	90.26	0.00	90.26	0.00
700	Out Axle 3	50.44	0.00	25.22	0.00
	Out Avia 4*	100.05	0.00		
	Out Axle 1*	120.35	0.00		
8.00 TA (b)	Mid Axle 2	67.25	0.00		
1300	Out Axle 3	67.25	0.00		
	Out Avia 1*	112.02	0.00	144.40	0.00
	Out Axle 1*	112.83	0.00	144.42	0.00
1350	Mid Axle 2 Out Axle 3	63.05	0.00	63.05	0.00
1350	Out Axie 3	63.05	0.00	31.53	0.00
	Out Axle 1*	90.26	0.00	11554	0.00
G (CTA)	Mid Axle 1	90.26 50.44	0.00 0.00	115.54	0.00
700	Out Axie 3	50.44	0.00	50.44	0.00
700	Out LYIE 3	30.44	0.00	25.22	0.00

lof j

```
No-Lift Off 1 lane
SA:11.5t (40/44t)
173.00
DA 20t (38-40/44t)
150.44
1000
84.07
DA 20t (38-40/44t)
150.44
1300
84.07
DA 20t (38-40/44t)
150.44
1800
84.07
TA (a) 24t (38-40/44t)
67.25
1300
120.35
1300
67.25
TA (a) 22.5t (38-40/44t)
63.05
1350
112.83
1350
63.05
TA (a) 18t (38-40/44t)
50.44
700
90.26
700
50.44
TA (b) 24t (38-40/44t)
120.35
1300
67.25
1300
67.25
TA (b) 22.5t (38-40/44t)
112.83
1350
63.05
1350
63.05
TA (b) 18t (38-40/44t)
90.26
700
```

50.44 700

- Charles - あったなななから 秋台でのため物のためたことができませる地域を持ち物である。

20FJ

```
50.44
DA 19t (33t restrict)
142.91
1000
79.86
DA 19t (33t restrict)
142.91
1300
79.86
DA 19t (33t restrict)
142.91
1800
79.86
DA 18t (25t restrict)
135.39
1000
75.66
DA 18t (25t restrict)
135.39
1300
75.66
DA 18t (25t restrict)
135.39
1800
75.66
SA:10.5t (17t-33t restrict)
157.96
SA:9t (13t restrict)
135.39
SA:7t (10t restrict)
105.31
SA:5.5t (7.5t restrict)
82.74
SA:2t (3t restrict)
30.09
HB 15 Units
102.77
1800
102.77
HB 20 Units
137.03
1800
137.03
HB 25 Units
171.28
1800
```

171.28

3 OF 3

HB 30 Units 205.54 1800 205.54 * HB 35 Units 239.80 1800 239.80 * HB 40 Units 274.05 1800 274.05 * HB 45 Units 308.31 1800 308.31

1 of 2

The second se

```
Lift-Off 1 lane
SA:11.5t (40/44t)
173.00
DA 20t (38-40/44t)
192.56
1000
42.03
DA 20t (38-40/44t)
192.56
1300
42.03
DA 20t (38-40/44t)
192.56
1800
42.03
TA (a) 24t (38-40/44t)
0.00
1300
0.00
1300
0.00
TA (a) 22.5t (38-40/44t)
94.58
1350
112.83
1350
31.53
TA (a) 18t (38-40/44t)
75.66
700
90.26
700
25.22
TA (b) 24t (38-40/44t)
0.00
1300
0.00
1300
0.00
TA (b) 22.5t (38-40/44t)
144.42
1350
63.05
1350
31.53
TA (b) 18t (38-40/44t)
115.54
700
50.44
```

700

The second second second second

Control of Manageria

1、対象を設定がある。実際機能が設定できた。これできた。これできたがある。できたいできたが、これできた。これが、一般できたがない。これできた。これできた。これできたがあり、これできたがあり、

```
25.22
DA 19t (33t restrict)
182.93
1000
39.93
DA 19t (33t restrict)
182.93
1300
39.93
DA 19t (33t restrict)
182.93
1800
39.93
DA 18t (25t restrict)
173.30
1000
37.83
DA 18t (25t restrict)
173.30
1300
37.83
DA 18t (25t restrict)
173.30
1800
37.83
SA:10.5t (17t-33t restrict)
157.96
SA:9t (13t restrict)
135.39
SA:7t (10t restrict)
105.31
SA:5.5t (7.5t restrict)
82.74
SA:2t (3t restrict)
30.09
*□
```

STOW MARIES - MULTI RESULTS - NO AXLE LIFT OFF

No Axle Lift Off - Worst Case Loading Positions

|--|

11.5t Single Axle – PASSES

Left H kN	span V kN	P Mr	lier Force	Right H kN	span V kN	Offset from L	Load kN	øL kN∕n^2	on kn/m^2	
239 293	160 195	1 2	0	280 253	258 148	461 738	528 455	736 58	174 735	

20t Double - 1.0m Axle Spacing - PASSES

Left	span		ier	Right	span	Offset	Load	oL	øR
H kN	V kN		Force	H kN	V kM	from L	kli	kN∕n^Z	kN∕n^Z
286	160	1	0	33 9	316	430	526	896	114
356	193	2		336	158	622	469	307	510

20t Double - 1.3m Axle Spacing - PASSES

Left spa H kN U k			Offset Fron L	Load EN .	σL kN∠m^2 l	er N/m^2
307 16	351	299	438	574	859	131
364 21	336	158	669	486	214	631

24t Triple Axle – PASSES

Left	span	Pi	er	Right	span	Offset	Load	eL	σR	
II kN	U kN	Mr	Force	H kN	V kN	from L	kN	kK/n^2	kN/m^2	
235 298	163 206	1 2	0	284 . 264	323 157	466 716	600 476	822 109	212 719	

STOW MARIES - MULTI RESULTS - AXLE LIFT OFF

Axle Lift Off - Worst Case Loading Positions

	tions for all load cases
3A:11.5t (40/44t) @ 11500	DA 20t (38-40/44t) @ 11000
DA 20t (38-40/44t) @ 11000	DA 201 (38-40/441) @ 11000
The Arra Cara Inc. Stor. C. Second	TA (a) 22.5t (38-40/44t) @ 11500
	TA (b) 24t (38-40/44t) @ 12000
	TA (Ъ) 18t (30-40/44t) @ 11000
771 22 0 100 0 1 mm	DA 19t (33t restrict) @ 11000
DA 19t (33t restrict) @ 11060	DA 18t (25t restrict) @ 11000 ·
on 18t (25t restrict) € 11000	Dn 18t (25t restrict) @ 11000
	SA:9t (13t restrict) @ 12000
3A:7t (10t restrict) @ 12000	SA:5.5t (7.5t restrict) @ 12000
Ba:2t (3t restrict) @ 13000	

20t Double Axle - 1.0m Axle Spacing - PASSES

Left H kM	span V kM	P Nr	ier Force	Right H kN	span V kN	Offset from L	Load kN	σL kN/m^2	oR kN∕n^Z	
254 336	159 197	1 2	0	315 297	318 150	426 722	586 460	909 91	102 709	

(JP)

20t Double Axle - 1.3m Axle Spacing - PASSES

Left span	Pier	Right	span	Offset	Load	oL	er	
H kN U kN	Nr Force	H kN	V kN	fron L	kN	kN/n^2	kn/n^2	
268 159	1 0	327	317	428	586	901	109	
346 197	2 0	. 309	150	718	460	100	701	

20t Double Axle - 1.8m Axle Spacing - PASSES

Left H kN	span V kN	F Mr	ier Force	Right H kN	span U kN	Offset from L	Load kN	σL kH∕m^2	σR kħ∠n^Z	
276 351	161 198	1 2		334 316	314 150	415 708	587 461	936 122	75 680	

WS/Atk	CALCULATION INDEX		
	CALOULATION CONTRACTOR		
200		= Calculation () = 3(3)30	
PROVECT		- 3 (4)(4) - 3. - 3(4) - 3(4) - 3	
FICENIAME	STOW MARIES HALT BRIDGE_	Jefets:	
FILE NO.	A A 18 7/1-1/2 1-1		
INDEXINO	CALCUILATION SINETEGRIDATIVA	OPPROJECT OF CASE	DATE
1-3	ARCH ANALYSU DATA	DL DL	7/00
4	NORTH MACH MEXE	OL ni	2/00
S	CONTRACT MEXIC	DL DL	2/00
6	COUTH PRUT MEXE	PL	2/00
7 7	NONTH MACH ARCHIE	DL	2/00
8	SOUTH MRCH MRCHIE	DL	2/00
10-16	MULTI AMPLYSU		
		<u> </u>	
			<u> </u>
			1
			
		Continued on Sheet	<u> </u>

ાં આવેલા પ્રોથમિક મુખ્યાના માર્ચ મા

check by DAL 29/2/00

Page 2

⇒ British Railways Board

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

STRUCTURE / LINE NAME

STOW MARIES HALT BRIDGE

ELR / STRUCTURE NO.

WFM/836

BRIEF DESCRIPTION OF EXISTING BRIDGE:

(a) Span Arrangement

The bridge has 3 no. clear square spans of 7.81m, 7.76m and 7.83m. There is no angle of skew.

(b) Superstructure Type

Three span brick arch.

(c) Substructure Type

Brick abutments and piers.

(d) Details of any Special Features

None.

ASSESSMENT CRITERIA

(a) Loadings and Speed

Loadings to be in accordance with BD 21/97. The current permitted traffic speed across the structure is 40mph.

(b) Codes to be used

See attached TAS schedule and March 1999 addendum.

(c) Proposed Method of Structural Analysis

The structure will be analysed as a multi span arch using the MULTI mechanism method computer program. The individual arches will be analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. For the overall capacity of the bridge the results of the MULTI mechanism will be used. For the analysis the following parameters will be adopted:

(1884年) 1985年 198

FORM 'AA' (BRIDGES)

GC/TP0356 Appendix: 4

APPROVAL IN PRINCIPLE FOR ASSESSMENT

Issue: 1 Revision: A Date: Feb 93

ARCHIE/MULTI

Backing level	1.5m above springing level
(determined from record drawings)	
Masonry self weight	21kN/m ³
Fill self weight	19kN/m ³
Surfacing self weight	23kN/m ³
φ' for fill	30°
ARCHIE passive pressure coefficient	0.3
Masonry strength	4.4 N/mm ²

Sales and State

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

MEXE:

		North Arch	Centre Arch	South Arch
Condition Factor	F_{cM}	0.9	0.9	0.9
Barrel Factor	\mathbf{F}_{b}	1.0	1.0	1.0
Fill Factor	$\mathbf{F_f}$	0.7	0.7	0.7
Width Factor	$F_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	F_{mo}	0.9	0.9	0.9
Depth Factor	$\mathbf{F_d}$	0.8	0.8	0.8

Axle lift-off will be considered.

Section sizes and dimensions will be based on drawings AI1658/1/FIG 01, 02, 03, 07, 08 and 09.

Details of any Special Requirements (d)

None

TRUCTURAL ASSESSMENT	ENGINEER'S COMMI	ENTS	(->
_	(N)	- (c) Arch z	(S) Arch 3
Squee Span	7.81	7.755	7.83
Staw angle	0	0	0
F &	1 · S	11525	1.51
* 2	1.21	1.03	1.22

ECC ASSESSMENT CONTRACT NO 3 STOW MARIES : CHECK AT #877/72

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: STOW MARIES HALT NORTH ARCH

1. DIMENSIONS

2. PROVISIONAL ASSESSMENT LOADING

(Fig. 3/1)

PAL = 619

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{7.81}{\sqrt{.5}} = \frac{5.21}{(\text{Fig. 3/3})}$$

4. PROFILE FACTOR

$$\frac{\text{rq}}{\text{rc}} = \frac{1.21}{1.5} = \frac{0.81}{\text{(Fig. 3/4)}}$$

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \frac{(Fb.d) + Ff.h}{d+h} = \frac{1-0 \times .59 + 0.7 \times .51}{.59 + .51} \qquad Fm = \frac{0.86}{.59 + .51}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 0.9 \times 0.8 \times 0.9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

NO LIFT OFF

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

40

Tonne

11. CONCLUSIONS:

Assessed By:

Signed:

Date: 29/2/00

ECC MISEISMENT CONTRACT NO 3 STOW MARIES 1 CHECK AI 1877/72

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: STOW MARIES HALT CENTRAL ARCH

1. DIMENSIONS

$$L = 7.755$$

$$rc = 1.525$$

$$rq = 1.23$$

$$d = 0.59$$

$$h = 0.49$$

$$h + d = 1.08$$

2. PROVISIONAL ASSESSMENT LOADING

(Fig. 3/1)

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{7.755}{4.53.6} = \frac{5.09}{(Fig. 3/3)}$$

4. PROFILE FACTOR

$$\frac{\text{rq}}{\text{rc}} = \frac{1.23}{1.525} = \frac{0.81}{1.525} \text{ (Fig. 3/4)}$$

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \frac{(Fb.d) + Ff.h}{d+h} = \frac{1 \cdot o \times .59 + .7 \times .49}{.54 + .49}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 9 \times 9 \times 9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

If who six

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

Tonne

11. CONCLUSIONS:

ecked Assessed By: Signed:

Date: 29/2/00

ECC ASSESSMENT CONTRACT NO3 STOW MARIES : CHECK

MI 1817/72

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: STOW MARIE MARIT

1. DIMENSIONS

$$\begin{array}{cccc}
 & \text{L} &= & 7.83 \\
 & \text{rc} &= & 1.51 \\
 & \text{rq} &= & 1.22 \\
 & \text{d} &= & 0.59 \\
 & \text{h} &= & 0.96 \\
 \end{array}$$

2. PROVISIONAL ASSESSMENT LOADING

3. SPAN / RISE FACTOR

$$L = 7.63 = 5.2$$
 (Fig. 3/3)

4. PROFILE FACTOR

$$\frac{\text{rq}}{\text{rc}} = \frac{1.22}{1.51} = \frac{0.61}{1.51} \text{ (Fig. 3/4)}$$

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = (Fb.d) + Ff.h) = 1 \times 159 + 7 \times 37$$
 $Fm = 0.68$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

$$MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

11. CONCLUSIONS:

Lesses Assessed By:

· Papinalia,

Signed:

Date: 29/2/00

()	Bleve e	Section	
Span Depth of fill Ring depth Position of backing	590 mm 🗸	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1500 mm 100 mm 1
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg 🗸	Masonry strength	4.4 N/mm^2
Load Lane width	4237mm 🛩	le:11.5t at 2000	
Required ring depth H Left	208 kN/m	H Right	2.16 213 kN/m
V Left Comp. zone at hinge	216 kN/m 2 52 mm		159 kN/m .3
Hinges 1 AT 1	0 3m m		<u>-</u>
TWIT	2 AT 7	3 AT 14	4 AT 21

3 AT 14

Param	(mn)	.segment

Param (m	u).segmei	nt				
		Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.9	0	0	0	0
2	-5.6	-13.1	0	0	0	Ō
3	-5.6	-11.6	0	0	0	Ö
4	-5.6	-10.1	0	-1.8	0	0
5	-5.6	-8.6	1.8	-15.4	2.2	0
6	-5.6	-7.5	1.3	-31.6	3.6	0
7	-5.6	-6.5	.8	-29.7	2.6	0
8	-5.6	-5.6	.5	-11.3	. 7	0
9	-5.6	-5.1	.3	4	0	Ō
10	-5.6	-4.8	.1	0	0	0
11	~5.6		1	0	0	Ō
12	-5.6	-5.1	3	0	0	1
13		-5.6	~.5	0	0	3
14		-6.5	8	0	0	7
15		- 7.5	-1.3	0	0	-1
16		-8.6	-1.8	0	0	-1.4
17		-10.1	0	0	0	0
18		-11.6	0	0	0	Ō
19		-13.2	0	0	0	0
20	-5.4	-13.9	0	0	0	n

Messed € 1 291/2/00

4 AT 21

Nortarch

() Span Depth of fill Ring depth Position of backing		7810 mm 510 mm 590 mm	Rise Depth of s Ring depth Depth of m		1500 mm 100 mm 1 0 mm
Fill density Surfacing density		19 kN/m ³ 23 kN/m ³	Masonry de	ensity	21 kN/m^3
Phi for fill		30 deg	Masonry st	rength	4.4 N/mm^2
Load Lane width		Double Axle	e:20.3t:Rig	ght Lift-off at	6000
Required ring depth		300 mm	Geometric	F.O.S	1.97
H Left		229 kN/m	H Right		223 kN/m
V Left		164 kN/m	V Right		240 kN/m
Comp. zone at hinge	2	56 mm	Factor on	pass. press.	.3
Hinges		m 0	3 AT	15	4 AT 21
1 AT 1	2 A	1 8	3 Ai	ΤO.	T A1 41

Param(m	Param(mn).segment Stone Vertical Horizontal Vertical Horizontal Additional					
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.9	0	0	0	0
2	-5.6	-13.1	0	0	0	0
3	-5.6	-11.6	0	0	0	0
	-5.6	-10.1	0	0	0	0
	-5.6	-8.6	1.8	0	0	1.4
6	-5.6	-7.5	1.3	0	0	1
7	-5.6	-6.5	.8	0	0	.7
8	-5.6	-5.6	.5	0	0	.3
9	-5.6	-5.1	.3	0	0	.1
		-4.8	.1	0	0	0
		-4.8	1	0	0	0
			3	-1.4	1	0
		-5.6	- , 5	-18.1	-1.1	0
			8	-37.4	-3.2	0
			-1.3	-33.2	-3.8	0
16		-8.6	-1.8	-13.3	-1.9	0
17	-5.6		0	-3.6	0	0
	-5.6		0	-4.2	0	0
19	-5.6		0	-4.3	0	0
20	-5.4		0	-3.3	0	0

Nortarch

() Span Depth of fill Ring depth Position of backing	7810 mm 510 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1500 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Triple Axl	.e:22.5t:Right Lift-off at	6000
Required ring depth	269 mm		2.19
H Left	225 kN/m		220 kN/m
V Left	165 kN/m	-	244 kN/m
Comp. zone at hinge 2	55 mm	Factor on pass. press.	.3
Hinges 1 AT 1 2	AT 8	3 AT 15	4 AT 21
I AI I	AI U	2 MT T2	T A1 21

Param (m	n).segme:	nt				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.9	0	0	0	0
2	-5.6	-13.1	0	0	0	0
3	-5.6	-11.6	0	0	0	0
4	-5.6	-10.1	0	0	0	0
5	-5.6	-8.6	1.8	0	0	1.4
6	-5.6	-7.5	1.3	0	0	1
7	-5.6	-6°.5	.8	0	0	. 7
8	-5.6	-5.6	.5	0	0	.3
9	-5.6	-5.1	.3	0	0	.1
10	-5.6	-4.8	.1	-1	0 .	0
11	-5.6	-4.8	1	-5.7	1	0
12	-5.6	-5.1	3	-7.4	3	0
13	-5.6	-5.6	5	-11.8	7	0
14	-5.6	-6.5	8	-24.6	-2.1	0
15	-5.6	-7.5	-1.3	-28.1	-3.2	0
16	-5.6		-1.8	-18.2	-2.6	0
17		-10.1	0	-9.4	0	0
18			0	-8.2	0	0
19			0	-6.2	0	0
20	-5.4	-13.9	0	-3.2	0	0

() Span Depth of fill Ring depth Position of backing	7755 mm Rise 490 mm Depth of surfacing 890 mm Ring depth factor 90 pepth of mortar loss	1525 mm 100 mm 1
Fill density Surfacing density	19 kN/m ³ Masonry density 23 kN/m ³	21 kN/m ³
Phi for fill	30 deg / Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	Single Axle:11.5t at 10970 4230mm 281 mm Geometric F.O.S 200 kN/m H Right 214 kN/m V Right 50 mm Factor on pass. press.	2.1 206 kN/m 156 kN/m
Hinges 1 AT 1 2 A	AT 7 3 AT 14	4 AT 21

Param(mn).segme	nt	1	******** 1	Wordgontal	Additional
			Horizontal	vertical	HOLIZOHCAL	Page Proce
		Dead Load			Live Load	
1	-5.4	-13.8	0	0	0	0
2	-5.6	-13	0	0	0	0
3	-5.6	-11.5	0	0	0	Ü
4	-5.6		0	-1.4	0	0
5	-5.6		1.9	-14.4	2.1	0
6	-5.6		1.3	-31.3	3.7	0
7	-5.6		. 9	-30.6	2.7	0
8	-5.6		.5	-12.3	.8	0
9	-5.6		.3	5	0	0
		-4.7	.1	0	0	0
		-4.6		Ö	0	0
		-4.9	3	Ö	0 -	1
		-5.4	5	ő	Ô	3
			8	Ŏ	Ŏ	7
14		-6.2		Ô	ñ	-1
15		-7.1	-1.3	0	n	-1.3
16		-8.3	-1.8	0	0	0
17	-5.6		0	0	0	0
18	-5.6		0	0	U	0
19	-5.6	-12.7	0	0	U	
20	-5.4	-13.4	0	0	O	0

Cherrer 25- 29/2/00

The state of the s

OK for 40/40 T

Centarch

()		Centa	I CII	
Span Depth of fill Ring depth Position of backing		7755 mm 490 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1525 mm 100 mm 1 0 mm
Fill density Surfacing density		19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill		30 deg	Masonry strength	4.4 N/mm ²
Load Lane width Required ring depth H Left		Double Axle 4230mm 305 mm 220 kN/m	e:20.3t:Right Lift-off at Geometric F.O.S H Right	14970 1.94 213 kN/m
V Left Comp. zone at hinge	2	162 kN/m 53 mm	V Right Factor on pass. press.	237 kN/m .3
Hinges 1 AT 1	2 AT	8 1	3 AT 15	4 AT 21

Parami	mm '	.segment
Farami		. sedillent

Param (mı).segme	nt				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.8	0	0	0	0
2	-5.6	-13	0	0	0	0
3	-5.6	-11.5	0	0	0	0
	-5.6	-10	0	0	0	0
5	-5.6	-8.6	1.9	0	0	1.4
	-5.6	-7.4	1.3	0	0	1
7	-5.6	-6.3	.9	0	0	. 7
8	-5.6	- 5.5	.5	0	0	. 3
9	-5.6	-5	.3	0	0	.1
10	-5.6	-4.7	.1	0	0	0
11	-5.6	-4.6	1	0	0	0
12	-5.6	-4.9	- 3	- .9	0	0
13	-5.6	-5.4		-16.5	-1	0
14	-5.6	-6.2	8	-37.1	-3.3	0
15	-5.6	-7.1	-1.3	-34.4	-4	0
16		-8.3	-1.8	-14.3	-2.1	0
17		-9.6	0	-3.6	0	0
18	-5.6	-11.2	0	-4.2	0	0
19	-5.6	-12.7	0	-4.3	0	0
20	-5.4	-13.4	0	-3 4	0	0

Centarch

centaren						
() Span Depth of fill Ring depth Position of backing	7755 mm 490 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1525 mm 100 mm 1 0 mm			
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m ³			
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2			
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	Triple Axl 4230mm 272 mm 217 kN/m 239 kN/m 54 mm		2.17 223 kN/m 165 kN/m			
Hinges 1 AT 1 2 2	AT 7	3 AT 15	4 AT 21			

Daram	(mn)	Seamer	יידו

PASSAGE ANNA VE

Param (m	i) .segmei	11-				
		Vertical		Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	
1	-5.4		0	-2.1	0	0
2	-5.6	-13	0	-3.4	0	0
3	-5.6	-11.5	0	-4	0	0
4	-5.6		0	-8.1	0	0
5	-5.6		1.9	-20.1	2.9	0
6	-5.6		1.3	-27.6	3.2	0
7		-6.3	. 9	-20.9	1.9	0
8		-5.5	.5	-13.7	. 9	0
9		-5	. 3	-14.9	.6	0
10		-4.7	.1	-8.4	.1	0
11		-4.6	1	6	0	0
			3	0	0	1
		-5.4	5	Ō	0	2
		-6.2	8	Ö	0	5
		-7.1	-1.3	Ō	0	-1
16		-8.3	-1.8	Ō	Ö	-1.4
17	-5.6		0	Õ	0	0
	-5.6		0	Ö	0	0
19	-5.6 -5.6		0	Ō	Ö	0
			0	ñ	Õ	0
20	-5.4	-13.4	•	~	-	

()	ALL LAND		
Span Depth of fill Ring depth Position of backing	590 mm 🗸	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm / 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg 🗸	Masonry strength	4.4 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	4133mm / 302 mm 196 kN/m 209 kN/m		1.95 203 kN/m 147 kN/m .3
Hinges 1 AT 1 2	AT 7	3 AT 14	4 AT 21

Param (mn), segment

Param / mu	earam (mm), segment					
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.4	0	0	0	0
2	-5.6	-12.6	0	0 .	0	0
3	-5.6	-11	0	0	0	0
4	-5.6	-9.3	0	-1.1	0	0
5	-5.6	-7.8	1.7	-15.1	2.2	0
6	-5.6	-6.6	1.1	-34.4	4	0
7	-5.6	-5.5	. 7	-31.7	2.8	0
8	~5.6	-4.6	. 4	-10	.6	0
9	-5.6	-4	. 2	1	0	0
10	-5.6	-3.6	.1	0	0	0
	-5.6	-3.6	1	0	0	0
	-5.6		2	0	0	1
13	-5.6	-4.3	- . 4	0	0	2
14		-5.1	7	0	0	5
15			-1.1	0	0	8
16		-7.2	-1.6	0	0	-1.1
17	-5.6		0	0	0	0
18		-10.3	0	0	0	0
19		-11.8	0	0	0	0
20	-5.4	-12.7	0	0	0	0

Chevels 29/2/00

Soutarch

Soucaren						
() Span Depth of fill Ring depth Position of backing	7830 mm 370 mm 590 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm 100 mm 1 0 mm			
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3			
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2			
Load Lane width	Double Axle	e:20.3t:Right Lift-off at	24375			
Required ring depth H Left V Left Comp. zone at hinge 2	322 mm 203 kN/m 148 kN/m 50 mm	Geometric F.O.S H Right V Right Factor on pass. press.	1.83 195 kN/m 231 kN/m .3			

Hinges 1 AT 1

2 AT 9

3 AT 16

4 AT 21

Param (m	n).segme	nt				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.4	0	0	0	0
2	-5.6	-12.6	0	0	0	0
3	-5.6	-11	0	0	0	0
4	-5.6	-9.3	0	0	0	0
5	-5.6	-7.8	1.7	0	0	1.2
6	-5.6	-6.6	1.1	0	0	.9
7	-5.6	-5.5	.7	0	0	. 6
8	-5.6		. 4	0	0	.3
9	-5.6	-4	. 2	0	0	.1
10	-5.6	-3.6	.1	0	0	0
11	-5.6	-3.6	1	0	0	0
			2	0	0	0
13	-5.6	-4.3	4	-1.1	1	0
	-5.6	-5.1	7	-16.9	-1.5	0
15			-1.1	-37	-4.3	0
16		-7.2	-1.6	-34.6	-5	0 ,
17		-8.7	0	-15.7	0	0
18		-10.3	0	-3.8	0	0
19	-5.6		0	-3.8	0	0
20	-5.4	-12.7	0	-3.7	0	0

Soutarch

()	Douce		
Span Depth of fill Ring depth Position of backing	7830 mm 370 mm 590 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1510 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Triple Axl	e:22.5t:Right Lift-off at	19875
Required ring depth	289 mm	Geometric F.O.S	2.04
H Left	213 kN/m	H Right	221 kN/m
V Left	234 kN/m	V Right	156 kN/m
Comp. zone at hinge 2	53 mm	Factor on pass. press.	.3
Hinges			
1 AT 1 2	AT 7	3 AT 15	4 AT 21

Param (mn) . segment

Param (m	ı, segmer	1L				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.4	-13.4	0	-2.2	0	0
2	-5.6	-12.6	0	-3.6	0	0
3	-5.6	-11	0	-4.2	0	0
4	-5.6	-9.3	0	-8	0	0
5	-5.6	-7.8	1.7	-21.6	3.1	0
6	-5.6	-6.6	1.1	-29.8	3.4	0
7	-5.6	-5.5	. 7	-20.5	1.8	0
8	-5.6	-4.6	. 4	-13	.8	0
9	-5.6	-4	.2	-16.4	.6	0
10	-5.6	-3.6	.1	-7.4	.1	0
11	-5.6	-3.6	- 1	2	0	0
12	-5.6	-3.8	2	0	0	0
13	-5.6	-4.3	4	0	0	2
14	-5.6	-5.1	7	0	0	4
15	-5.6	-6.1	-1.1	0	0	8
16	-5.6	-7.2	-1.6	0	0	-1.2
17	-5.6	-8.7	0	0	O	0
18	-5.6		0	0	0	0
19	-5.6		0	0	0	0
20	-5.4	-12.7	0	0	0	0

AT 1877/12 STOW MARIES ! C

Page 10

MULTI INPUT

Nortarch 1500 7810 20 590 1 4 21 19 30 1 602 4.4 8000 0 0 100 23 **√**0,0,2600 ✓ 328,275,2600 675,524,2600 1040,748,2600 1420,944,2600 1813,1112,2600 2218,1251,2600 2632,1359,2600 3052,1437,2600 3478,1484,2600 --3905,1500,2600 -4332,1484,2600 4758, 1437, 2600 5178,1359,2600 5592,1251,2601 5997,1112,2601 6390,944,2601 6770,748,2601 7135,524,2602 7482,275,2602 **7810,0,2602** centarch

ことできます しゅうまからなる はいない はいしょ しょうかん かっちゃく

```
centarch
  1525
   7755
  20
  590
  1
  4
  21
  19
  30
  1
  599
  4.4
  8000 🗸
  8.97 🗸
             7.810 +1160
  0
  100
  23
 0,0,2603 ~
 323,279,2604
 666,532,2606
 1027,760,2607
 1404,959,2609
 1795,1130,2609
 2197, 1271, 2610
 2609, 1382, 2610
 3028,1461,2609
 3452,1509,2608
-3878,1525,2605 -
                    1524 +1080
 4304, 1509, 2601
 4728, 1461, 2597
 5147,1382,2591
 5559,1271,2585
 5961,1130,2579
 6352,959,2572
 6729,760,2565
 7090,532,2559
 7433,279,2552
 7756,0,2546
 soutarch
             (- 2985-0.5)
 -3.485 🛩
```

and the state of the Carlo Samuel State of the State of t

er en la servició de la companya de

```
soutarch
   1510
   7830
   20
   590
   1
   4
   21
   19
   30
   1
   603
   4.4
   8000
   17.875 (8.97 + 7.755 + 1.15)
   0
   100
   23
  0,0,2529
  328,276,2524
676,528,2519
  1042,753,2513
  1423,950,2508
  1817,1119,2502
  2223, 1259, 2495
  2638, 1368, 2489
  3060,1447,2483
3486,1494,2476
- 3915,1510,2470 (1510 + 960 · 2470)
  4344,1494,2464
4770,1447,2457
  5192,1368,2451
  5607,1259,2445
  6013,1119,2438
  6407,950,2432
  6788,753,2427
  7154,528,2421
  7502,276,2416
 /7830,0,2411  ✓
                  -13.195+0.5)
  -3.695
```

Control of the Contro

•	
nol	Bridge or arch name
1390	Rise
2780	Span
20	Number of segments
350	Ring thickness
1	Ring thickness factor
5	Backing level
20	Masonry Self weight kN/m ³
18	Fill self weight
35	Φ for fill
1	Passive pressure coefficient (*10)
218	Segment length
3	Masonry strength
8000	A notional E value for later developments
0	Chainage of start of arch in m
1.64	Height of springing in m
100	Surfacing depth
20	Surfacing density
-1390,0,2020	intrados x,y and surface y in mm origin at
-1373,217,2020	centre of span
-1322,430,2020	
-1238,631,2020	
-1125,817,2020	
-983,983,2020	
-817,1125,2020	
-631,1238,2020	
-430,1322,2020	,
-217,1373,2020	
0,1390,2020	
017 1070 0000	

Page 11

Next span file name for multi, * for last span Pier base height in m

217,1373,2020 430,1322,2020 631,1238,2020 817,1125,2020 983,983,2020 1125,817,2020 1238,631,2020 1322,430,2020 1373,217,2020 1399,0,2020

no2

0

Job ref Project ECC ASSESSMENT CONTINER NO 3 ws/Atkins AI 1877/72 STOW MARIES! CHECK Caic sheet no Part of structure MU UT 1 1 12 Check by Date Date Calc by Drawing ref 2516 29/2/00 Output Calculations Ref (From multi ru WORST LOAD POSITIONS T 11500 11.5 2ء 11 000 DA 12000 TA 18 11500 TA 22.5 11 000 11000 PA DA 11500 18 OA 11000 10.5 11000 SA 51 7 12000 14 13000 11000 DA 29 11500 20 DA 12000 22.5 74 11000 24 18 11 500 TA 11000 19 DA 18 11000 DA 11 Sos 18 DA 12000 S.A. 2.5 12000 1

The state of the second st

WS/	Atkins	Project ECC ASS STOW M	ESS CONTRI LRIES: C		Job ref AI 1817/72
		Part of structure	NULTI		Calc sheet no rev
		Drawing ref	Calc by	Date	Check by Date Duck 29/2
Ref		Calculations			Output
	For Central	Arch (co	27XT Ca	se)	
SA	11.5 T Axle	> 11.5 x	9.81 2 3.0	4 =	156 KN/m
D (1 000)		0-6	48 - 0 - 9	+ 4 23	
DA	10.0 T Ax	· -> /0.1	x 9.41 ×	3.4	135 >
١١٥٥٥ ک	10.07 Azl		648 x 0.4		75-
			0.648 20		
TA	6.7 Auto	•	× 9.81 ×		2-10-8
(C)	87 Axl	-> °	x 9.81 x	719	60
500	8 T Aucle		× 9.8 (2.64
				.cy × 4.23	
				<u> </u>	
			· · · · · · · · · · · · · · · · · · ·		
					:
			1		
				: :	
	:				
F					

JULY 1 THE THE 1 DO

The state of the s

ECC ASSESSMENT LOUTRACT Nº 3

STOW MARIES : CHE

AI 1877/12

page 14

11.5T S.A @ 11500

Fue Ac. 23

156 12/2.

28/2/00 00/2/82

MULTI ANALYSIS TABULATED RESULTS

Loadcase: 11.5 T air 11500 contral Pier

	Left	span		Pier	Right	span	Offset	Load	, σL	σR
·	I (kN)	V (kN)	Nr	Force	H(kN)	V (kN)	From L	(kN)	(KN/m^2)	(KN/m^2)
	185	162	,	٥	221	246	420	517	746	146
	232	190	2	<u> </u>	211	154	621	456	300	494
_										
<u></u>										

ABUTMENT REACTIONS

Left H= 185 kN V= 123 kN @ 265 mm from springing Right H= 212 kN V= 110 kN @ 265 mm from springing

AC. 23

Drc 28/2/00

ECC ASSESSMENT CONTRACT NO 3
STOW MARIES: CHECK BY

AT 1877/72

Page 15

DA 25 11000

20/1/00 29/1/00

-de AD. 23

MULTI ANALYSIS TABULATED RESULTS

Loadcase: DA @ 11000

Left	span		Pier	Right	span	Offset	Load	σL ,	σR
H (kN)	V (kN)	Nr	Force	H (kN)	V (kN)	From L	(kN)	(KN/m^2)	(KN/m ²)
232	159	1	٥	279	283	501	551	668	282
233	207	2	0	252	153	719	472	102	720
									:

ABUTMENT REACTIONS

Left	H= 233	kN	V= 126	kN@ 902	mm from springing
Right	H= 252	kN	V= 111.	kN@ 473	mm from springing

AD, 23

ECC ASSISSMENT CONTRACT NO STON MARIES: CHECK BY AI 1877/72

29/2/00

国的基本公司

The second s

MULTI ANALYSIS TABULATED RESULTS

	Loadcase:	TA	at	11500					· /	
,	Left	span		Pier	Right	span	Offset	Load	σL	σR
	H (kN)	V (kN)	Nr	Force	H (kN)	V (kN)	From L	(kN)	(KN/m ²)	σR (KN/m²)
	174	159	1	0	2-31	304	+37	576	863	129
-	244	100		0	215	154	654	466	237	574
\mathbf{I}							-			
L										į

ABUTMENT REACTIONS

Left
$$H= 17+ kN$$
 $V= 129 kN @ 818 mm$ from springing Right $H= 215 kN$ $V= 110 kN @ 257 mm$ from springing

Au struser tre le compressué.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/836 ECC Bridge No. 1658

Structure: Stow Maries Halt Bridge

Date: March-2000

APPENDIX C

APPROVAL IN PRINCIPLE

AND

INSPECTION FOR ASSESSMENT

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/836 ECC Bridge No. 1658

Structure: Stow Maries Halt Bridge

Date: May-2000

APPENDIX C

APPROVAL IN PRINCIPLE

AND

INSPECTION FOR ASSESSMENT