ESSEX COUNTY COUNCIL ASSESSMENT CONTRACT 3

APPROVAL IN PRINCIPLE FOR THE ASSESSMENT OF WELLINDITCH BRIDGE

ECC BRIDGE NO. 1662 RAIL PROPERTY Ltd BRIDGE NO. WFM/833

IOPSIOPS

APPROVAL IN PRINCIPLE FOR THE ASSESSMENT OF WELLINDITCH BRIDGE

ECC Bridge Number 1662

Rail Property Number WFM/833

APPROVAL IN PRINCIPLE CONTENTS

- British Railways Board FORM 'AA' (BRIDGES)
- British Railways Board FORM 'AA/1' (BRIDGES)
- Location Plan
- General Arrangement, Cross Section and Idealisation Drawings
- Technical Approval Schedule "TAS" (June 1989)
- Appendix to TAS Schedule dated (June 1989) WS Atkins amended March 1999
- Appendix: Inspection for Assessment

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

STRUCTURE / LINE NAME WELLINDITCH BRIDGE
ELR / STRUCTURE NO. WFM/833

BRIEF DESCRIPTION OF EXISTING BRIDGE:

(a) Span Arrangement

The bridge has 3 no. clear skew spans of 8.70m, 8.65m and 8.70m. The angle of skew is 26°.

(b) Superstructure Type

Three span brick arch.

(c) Substructure Type

Brick abutments and piers.

(d) Details of any Special Features

None.

ASSESSMENT CRITERIA

(a) Loadings and Speed

Loadings to be in accordance with BD 21/97. The current permitted traffic speed across the structure is 60mph.

(b) Codes to be used

See attached TAS schedule and March 1999 addendum.

(c) Proposed Method of Structural Analysis

The structure will be analysed as a multi span arch using the MULTI mechanism method computer program. The individual arches will be analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. For the overall capacity of the bridge the results of the MULTI mechanism will be used. For the analysis the following parameters will be adopted:

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ARCHIE/MULTI

Backing level	1.4m above springing level
(determined from record drawings)	
Masonry self weight	21kN/m ³
Fill self weight	19kN/m ³
Surfacing self weight	23kN/m ³
φ' for fill	30°
ARCHIE passive pressure coefficient	0.3
Masonry strength	4.4 N/mm^2

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

MEXE:

		North Arch	Centre Arch	South Arch
Condition Factor	F_{cM}	0.9	1.0	0.9
Barrel Factor	F_{b}	1.0	1.0	1.0
Fill Factor	F_f	0.7	0.7	0.7
Width Factor	$F_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	F_{mo}	0.9	0.9	0.9
Depth Factor	F_d	0.8	0.8	0.8

Axle lift-off should be considered.

Section sizes and dimensions will be based on drawings AI1658/1/FIG 01, 02, 03, 07, 08 and 09.

(d) Details of any Special Requirements

None.

STRUCTURAL ASSESSMENT ENGINEER'S COMMENTS

CIVIL ENGINEER'S COMMENTS

Brifish	Railways	Board

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

BRB WORKS GROUP COMMENTS - IF APPLICABLE

PROPOSED CATEGORY F	OR INDEPENDENT CHECK
SUPERSTRUCTURE	2
SUBSTRUCTURE	N/A
NAME OF CHECKER SUG	GESTED IF CAT 2 OR 3 Different team within office
	SIGNED
	TITLE
	DATE

FOR AND ON BEHALF OF WS ATKINS CONSULTANTS LTD

	ys Board
514141514	1000 40

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

CATEGORY 1

THE ABOVE ASSESSMENT, WITH AMENDMENTS SHOWN, IS APPROVED IN PRINCIPLE:

SIGNED	N/A
TITLE	
DATE	

CATEGORY 2 AND 3

THE ABOVE ASSESSMENT, WITH AMENDMENTS SHOWN, IS APPROVED IN

PRINCIPLE:

SIGNEE			
TITLE			
DATE			

FORM 'AA/1' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ADDITIONAL INFORMATION REQUIRED FOR BRB PUBLIC ROAD OVERBRIDGES ASSESSED AS PART OF BRIDGEGUARD III

STRUCTURE / LINE NAME	WELLINDITCH BRIDGE
(6-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	
ELR / STRUCTURE NO.	WFM/833

SCOPE OF ASSESSMENT

An inspection of the structure has been carried out prior to the assessment in order to confirm section sizes and overall dimensions as shown on the drawings. The substructure shows no signs of distress and is deemed satisfactory, therefore no analysis will be carried out. The deck will be assessed to determine its load carrying capacity at ULS. HB loading and SLS checks are not applicable to arches. The parapets will not be assessed since they do not meet current standards.

ASSESSMENT CRITERIA

a) Standards and Codes of Practice to be used in assessment

See attached TAS schedule and March 1999 addendum.

b) Proposed method of structural analysis

The structure will be analysed as a multi span arch using the MULTI mechanism method computer program. The individual arches will be analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. For the overall capacity of the bridge the results of the MULTI mechanism will be used. For the analysis the following parameters will be adopted:

ARCHIE/MULTI

D. . 1 * . . . 1 1

1.4m above springing level
$21kN/m^3$
19kN/m ³
23kN/m ³
30°
0.3
4.4 N/mm ²

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

FORM 'AA/1' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

MEXE:

		North Arch	Centre Arch	South Arch
Condition Factor	F_{cM}	0.9	1.0	0.9
Barrel Factor	F_b	1.0	1.0	1.0
Fill Factor	F_f	0.7	0.7	0.7
Width Factor	$F_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	F_{mo}	0.9	0.9	0.9
Depth Factor	F_d	0.8	0.8	0.8

Axle lift-off should be considered.

Section sizes and dimensions will be based on drawings AI1877/1375/FIG 01, 02, 03, 07, 08 and 09.

- Planned Highway works / modifications at this site
 None planned.
- d) Road designation / class and whether classed as a heavy load route
 Unclassified. The road is not a heavy load route.
- e) Any other requirement

None.

The above is agreed subject to the amendments and comments shown below

FOR AND ON BEHALF ESSEX COUNTY COUNCIL TRANSPORTATION AND OPERATIONAL SERVICES DIVISION.

LOCATION PLAN, DRAWINGS AND IDEALISATION DIAGRAMS

Jan 2000

AUG 99

DATE.

DATE

CHECKED

AUTHORISED

STOW MARIES

LOCATION PLAN

DO NOT SCALE

ECC Bridge No. 1662 Roll Property Board No. WFM/833

All Dimensions in mm All levels in metres above local datum Notes:

Ŋ

EAST ELEVATION

WELLINDITCH BRIDGE, STOW ELEVATIONS

MARIES

1

ECC ASSESSMENT CONTRACT 3
RAIL PROPERTY LTD BRIDGES DEVENTE NO. A1877/DWGS/1662/fig01

DO NOT SCALE

ECC Bridge No. 1662 Rall Property Board No. WFM/833

Notes:

All Dimensions in mm All levels in m above local datum

င O T REFER TO DWG 02 FOR LOCATION OF SECTION A-A

340

B

Faces of arch barrel show 5 no. brick rings

TYPICAL CROSS SECTION A-A

Not To Scale

Position	CL Arch 1 (North)	CL Arch 1 (North) CL Arch 2 (Central) CL Arch 3 (South)	CL Arch 3 (South)
A Top of West Parapet	10.036	10.082	10.023
B Bottom of West Parapet	8.688	8.754	8.659
C West Edge Carriageway	8.706	8.781	8.660
D CL Carriageway	8.793	8.823	8.688
E East Edge Carriageway	8.709	8.736	8.554
F Bottom of East Parapet	8.649	8.599	8.462
G Top of East Parapet	10.039	10.064	9.993

WS/Alkins					
	CAS H-W1877/1982/1903		NTS		
	STATION NORWEN	DATE			
		12/10	O.W	90000	
		12/10	∆#	Control of the last of the las	
	7				
	MONENCE	1/00	80		
	BCSEO			W. W.	
	ĕ			The second second	
Ç		WELLINDITCH		Constitution of themselven	

ROSS SECTION MARIES RAIL I

RAIL PROPERTY LTD BRIDGES

M1877/DWCS/1862/fig03

ECC Bridge No.

1662

Rail Property Board No. WFM/833

ARCH No.1(NORTH ARCH) IDEALISATION DIAGRAM NTS

WELLINDITCH BRIDGE, STOW MARIES
IDEALISATION DIAGRAM ARCH 1

DRWG.NO. AI1877	/1662/FIG07
CAD NO. N:1877	7/1662/fig07
SCALES NTS	
DATE JAN 00	DRAWN/TRAC
DATE JAN 00	CHECKED

AUTHORISED

DATE

ECC Bridge No.

1662

Rail Property Board No. WFM/833

ARCH No.2 (CENTRAL ARCH) IDEALISATION DIAGRAM NTS

WELLINDITCH BRIDGE, STOW MARIES IDEALISATION DIAGRAM ARCH 2

DRWG.NO.	Al1877/	/1662/fig08
CAD NO.	N:1877,	/1662/fig08
SCALES	NTS	

DATE JAN 00	DRAWN/
DATE JAN 00	CHECK
DATE	AUTHORISED

ECC Bridge No.

1662

Rail Property Board No. WFM/833

ARCH No.3 (SOUTH ARCH) IDEALISATION DIAGRAM NTS

WELLINDITCH BRIDGE, STOW MARIES IDEALISATION DIAGRAM ARCH 3

DRWG.NO.	AI1877/	′1662/fig09	
CAD NO.	n:1877,	/1662/fig09	
SCALES	NTS		
DATE JAN	00	DRAWN/TRACE	
DATE JAN	00	CHECKED	
DATE		AUTHORISED	_

TECHNICAL APPROVAL SCHEDULE

AI1877/73/1.GEN Jan 2000

TECHNICAL APPROVAL SCHEDULE "TAS" (JUNE 1989)

SCHEDULE OF DESIGN DOCUMENTS RELATING TO HIGHWAY BRIDGES & STRUCTURES (All documents are taken to include revisions current at date of this TAS).

BRITISH STANDARDS

BS 153 Part 3A, Specification for Steel Girder Bridges (see BE 1/77).

BS 5268 Part 2, Structural Use of Timber

BS 5400 - Steel concrete and composite bridges

Part 1: 1978 - General Statement (SEE BD 15/82)

Part 2: 1978 - Specification for loads (see BD 14/82)

Part 3: 1982 - CP for design of steel bridges (see BD 13/82)

Part 4: 1984 - CP for design of concrete bridges (see BD 24/84)

Part 5: 1979 - CP for design of composite bridges (see BD 16/82)

Part 9: 1983 - Bridge bearings (see BD 20/83)

Part 10: 1980 - CP for fatigue (see BD 9/81)

BS 5628: Part 1: 1978 - Unreinforced Masonry

BS 5930: 1981 - Site investigations

BS 6031: 1981 - Earthworks

2. BRITISH STANDARD CODES OF PRACTICE

CP 114: Part 2 Reinforced concrete in buildings (see Tech Memo BE 1/73)

CP 116 Part 2 The structural use of precast concrete (see Tech Memo BE 1/73)

CP 118 The structural use of aluminium

CP 2 Earth retaining structures

CP 2004 Foundations

3. PUBLICATIONS (HMSO)

Railway construction and Operation Requirements, Structural and Electrical clearances (1977).

Railway construction and operation. Requirements for passenger lines and recommendations for goods lines 1950 (reprinted 1970).

Roads in urban areas and Metric Supplement (as amended by TA 32/82)

Layout of roads in rural areas and Metric Supplement (as amended by TA 28/82).

Specification for Highway Works and Notes for Guidance (1986 Edition).

Highway Construction Details (1987 Edition).

Simplified Tables of External loads on Buried Pipelines (1970).

4. MISCELLANEOUS

Circular Roads No 61/72 - Routes for heavy and high abnormal loads.

5. TECHNICAL MEMORANDA (BRIDGES)

- BE 5 The design of Highway bridge parapets (4th revision)
- BE 27 Waterproofing and surfacing of bridge docks.
- BE 3/72 Expansion joints for use La highway bridge docks.
- BE 1/73 Reinforced concrete for highway structures (Relevant ports for the design of buried precast concrete pipes and sign/signal gantries only).
- BE 1/74 The independent checking of erection proposals and temporary works details for major highway structure an trunk roads and motorways.
- BE 8/75 Painting of concrete highway structures
- BE1/77 Standard highway loadings (Relevant parts for the design of buried precast concrete pipes and sign/signal gantries only)
- BE 7/77 Department standard (interim) motorway sign/signal gantries
- BE 1/78 Design criteria for footbridges and sign/signal gantries (Relevant for the design of sign/signal gantries only)
- BE 3/78 Reinforced earth, and anchored earth retaining walls and bridges abutments for embankments

HIGHWAYS TECHNICAL MEMORAND.	6.	HIGHWAYS	TECHNICAL	MEMORANDA
--	----	----------	-----------	------------------

H 14/76 Noise barriers - Standard and Materials

7. MEMORANDA (BRIDGES	7.	MEMORANDA ((BRIDGES
-----------------------	----	-------------	----------

IM 5 Formation of continuity joints in bridge decks

- 8 DEPARTMENTAL STANDARDS
- 8.1 TRAFFIC ENGINEERING AND CONTROL

TD 2/78 Pedestrian Subways - layout and dimensions

TD 3/79 Combined pedestrian and cycle subways - layout and dimensions

TD 9/81 Road layout and geometry. Highway link design

TD 19/83 Safety fences and barriers

TD) 27/86 Cross Sections and headroom

8.2 BRIDGES AND STRUCTURES

BD 2/89 Technical approval of DTp highway structures on motorways and other trunk roads

BD 6/81 Approval in principle and calibrating of computer programs for use in DTp highway structures on trunk roads and motorways

BD 7/81 Weathering steel for highway structures

BD 9/81 Implementation of BS 5400 Pt 10, CP for fatigue

BD 10/82 Design of highway structures in areas of mining subsidence

BD 12/82 Corrugated steel buried structures

BD 13/82 Design of steel bridges - 'Use of BS 5400 Pt 3: 1982

BD 14/82 Loads for highway bridges Use of BS 5400 Pt 2: 1978

BD 15/82 General principles - Use of BS 5400 Pt 1:1978

BD 16/82 Design of composite bridges - 'Use of B3 5400 Pt 5-, 1979

BD 19/83 Standard Bridges

BD 20/83 Bridge Bearings - 'Use of BS S400 Part 9: 1983

BD 21/84 The assessment of highway bridges and structures

Jan 2000

BD 24/84	Design of concrete bridges - Use of BS 5400 Pt 4: 1984
BD 26/86	Design of lighting columns
BD 27/86	Materials for the repair of concrete highway structures
BD 28/87	Early thermal cracking of concrete
BD 29/87	Design criteria for footbridges
BD 30/87	Backfilled retaining walls and bridge abutments
BD 31/87	Buried concrete box type structures
BD 32/88	Piled foundations
BD 34/88	Assessment and Strengthening of Highway Structures on Motorways and other Trunk Roads
BD 35/88	Quality Assurance Scheme for paints and similar protective coatings
BD 36/88	The Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures
BD 37/88	Loads for Highway Bridges

AI1877/73/1.GEN Jan 2000

APPENDIX TO TAS SCHEDULE DATED JUNE 1989 (WS Atkins amended March 1999, incorporating relevant technical standards published since June 1989)

1. BRITISH STANDARDS

BS 4360: 1990 - Specification for Weldable Structural Steel.

BS 4466: 1989 - Scheduling, Dimensioning, Bending and Cutting of Steel
Reinforcement for Concrete

BS 5400 - Steel, Concrete and Composite Bridges.

Part 1: 1988 General Statement (see BD 15/92).

Part 4: 1990 - CP for Design of Concrete Bridges (see BD 24/92).

BS 5628 - Use of Masonry.

Part 1: 1992 - Unreinforced Masonry.

Part 2: 1985 - Reinforced and Prestressed Masonry.

BS 5075: 1006 CP for Falsework

BS 6651: 1992 - CP for Protection of Structures Against Lightning.

BS 6779 - Highway Parapets for Bridges and Other Structures

Part 1: 1998 - Specification for Vehicle Containment Parapets of Metal Construction.

Part 2: 1991 - Specification for Vehicle Containment Parapets of Concrete Construction.

Part 3: 1994 - Specification for Vehicle Containment Parapets of Combined Metal and Concrete Construction.

BS 7295: 1990: Fusion Bonded Epoxy Coated Carbon Steel Bars for the

Parts 1 & 2 - Reinforcement of Concrete

BS 7668: 1984 - Weldable Structural Steels. Hot Finished Structural Hollow

Sections in Weather Resistant Steels

BS 8002: 1994 - CP for Earth Retaining Structures.

BS 8004: 1986 - CP for Foundations.

BS 8118 Structural Use of Aluminium.

BS EN 10025: 1993 - Specification for Hot Rolled Products of Non-alloy Structural Steels - Technical Delivery Conditions.

BS EN 10113: Hot Rolled Products in Weldable Fine Grain Structural Steel.

Parts 1-3 -

AI1877/73/1.GEN Jan 2000

BS EN 10155: 1993 - Structural Steel with Improved Atmospheric Corrosion Resistance. Technical Delivery Conditions.

3. DoT PUBLICATIONS (HMSO)

Manual of Contract Documents for Highways Works:

Volume 1: Specification for Highway Works.

Volume 2: Notes for Guidance on the Specification for Highways Works.

Volume 3: Highway Construction Details.

Volume 4: Bills of Quantities for Highways Works.

8. DEPARTMENTAL STANDARDS

8.1 TRAFFIC ENGINEERING AND CONTROL

TD 9/93 Road Layout and Geometry, Highway Link Design.

TD 27/96 - Road Geometry Links - Cross Sections and Headrooms.

TD 32/93 - Wire Rope Safety Fences.

TD 36/93 — Subways for Pedestrians and Pedal Cyclists – Layout and Dimensions.

8.2 BRIDGES AND STRUCTURES

BD 10/97 - Design of Highway Structures in Areas of Mining Subsidence.

BD 12/95 — Design of Corrugated Steel Buried Structures with Spans not Exceeding 8m, Including Circular Arches.

BD 13/90 - Design of Steel Bridges. Use of BS 5400 Pt 3: 1982.

BD 15/92 - General Principles for the Design and Construction of Bridges - Use of BS 5400 Pt 1: 1988.

BD 20/92 - Bridge Bearings, Use of BS 5400 Pt 9: 1983.

BD 21/97 - The Assessment of Highway Bridges and Structures.

BD 24/92 - Design of Concrete Bridges - Use of BS 5400 Pt 4: 1990.

BD 26/94 - Design of Lighting Columns.

BD 33/94 - Expansion Joints for Use in Highway Bridge Decks.

BD 34/90 -	Programme for Highway Structures on Motorways and Other Trunk Roads.
	Stage 1 - Older Short Span Bridges and Retaining Structures.
BD 35/93	 Quality Assurance Schemes for Paints and Similar Protective Coatings.
BD 36/92 -	Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures.
BD 41/97	Reinforced Clay Brickwork Retaining Walls of Pocket Type and Grouted Cavity Type Construction.
BD 42/94	Design of Embedded Retaining Walls and Bridge Abutments (Unpropped or Propped at the Top).
BD 43/90 -	Criteria and Materials for the Impregnation of Concrete Structures.
BD 44/95 -	The Assessment of Concrete Highway Bridges and Structures.
BD 45/93	Identification Marking of Highway Structures.
BD 46/92 -	Technical Requirements for the Assessment and Strengthening Programme for Highway Structures. Stage 2 - Modern Short Span Bridges.
BD 47/94 -	Waterproofing and Surfacing of Concrete Bridge Decks.
BD 48/93	The Assessment and Strengthening of Highway Bridge Supports.
BD 49/93 -	Design Rules for Aerodynamic Effects on Bridges.
BD-50/92 -	Technical Requirements for the Assessment and Strengthening Programme for Highways Structures. Stage 3 - Long Span Bridges.
BD 51/98 -	Design Criteria for Portal and Cantilever Sign/Signal Gantries.
BD 52/93 -	The Design of Highway Bridge Parapets.
BD 53/95	Inspections and Records for Road Tunnels.
BD 54/93	Post Tensioned Concrete Bridges. Prioritisation of Special Inspections.
DD 50/00	The Assessment of Steel Highway Duideon and Stanatures

AI1877/73/1.GEN Jan 2000

BD 57/95 - Design for Durability.

BD 58/94 The Design of Concrete Highway Bridges and Structures with External and Unbonded Prestressing.

BD 60/94 The Design of Highway Bridges for Vehicle Collision Loads.

BD 61/96 - The Assessment of Composite Highway Bridges.

BD 62/94 As Built, Operational and Maintenance Records for Highway Structures.

BD 63/94 - Inspection of Highway Structures.

BD 65/97 - Design Criteria for Collision Protector Beams.

BD 67/96 - Enclosures of Bridges.

BD 68/97 - Crib Retaining Walls.

BD 70/97 - Strengthened / Reinforced Soils and Other Fills for Retaining Walls and Bridge Abutments (Use of BS 8006: 1995).

SD 4/92 - Procedure for Adoption of Proprietary Manufactured Structures.

Jan 2000

APPENDIX INSPECTION FOR ASSESSMENT

AI1877/73/1.GEN Jan 2000

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/833 ECC Bridge No. 1662

Structure: Wellinditch Bridge

Date: January 2000

BRIDGE INSPECTION DETAILS AND CONDITION RATING

ECC Bridge No.:

1662

Rail Property Ltd Bridge No.: WFM/833

Bridge Name:

Wellinditch Bridge

Location:

Stow Maries, Essex

Grid reference TQ 582026 198688

Date of Inspection:

02 December 1999

Weather:

Dry, cold and windy

Description:

Three span brick arch bridge with brickwork abutments,

piers and parapets.

Inspection Method:

Hands on

CONSULTING ENGINEERS CONDITION RATING		GINEERS CONDITION RATING
**** Satisfactory Cond		Satisfactory Condition
✓	***	Repairs Required
	**	Urgent Repairs Required
	*	Bridge In Dangerous Condition

To be filled in by Essex County Council

	Date
Inspected by	02 Dec 1999
Prepared by	Jan 2000
Checked by	Feb 2000

BRIDGE CLIENT			BRIDGE NO 1662			
File	Initial		Date	Sugge: Condi Rati	tion	
Read by			1.00			
Read by	15 Aug 14 Aug	3 43 3.4				
Comments						

Date: January 2000

Index

Section	Description	Page No.
1	Introduction	1
2	Reference Drawings	2
3	Inspection Procedure	3
4	Condition Report	4
5	Conclusions	8
6	Recommendations for Assessment	10
	Appendix - A : Photographs	
	Appendix - B : Defect Diagrams	
	Appendix - C : Statutory Undertakers	

Date: January 2000

1.0 INTRODUCTION

- 1.1 Essex County Council (ECC) entered into an agreement with Rail Property Ltd to assess Rail Property Ltd owned bridges carrying publicly maintainable highways. WS Atkins Consultants Ltd Essex (WSAE) have been appointed by ECC to carry out the visual inspections and assessments of the bridges.
- 1.2 Wellinditch Bridge carries an unclassified road over a dismantled railway to the north of South Woodham Ferrers in Essex OS Ref. TQ 582026 198688.
- 1.4 An inspection of the structure was carried out on 02 December 1999. The inspection included a visual inspection and dimension survey to confirm structural details. The weather was dry, cold and windy during the inspection.
- 1.5 The results of the inspection are presented within the text of this report.
- 1.6 The structure consists of three skew span brick arches supported on brick abutments and piers. The arches each have clear skew spans of 8.70m, 8.65m and 8.70m with an angle of skew of 26°. The parapets are brick.
- 1.7 The carriageway is 5.7m wide with a 0.9m and 1.1m wide verge on the east and west side of carriageway respectively. The vertical alignment of the carriageway over the structure is a slight hog curve and the horizontal alignment is straight.
- 1.8 There is no weight restriction on the structure.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/833 ECC Bridge No. 1662

Structure: Wellinditch Bridge

Date: January 2000

2.0 REFERENCE DRAWINGS

2.1 Rail Property Ltd provided drawings prior to the inspection. The references are:

5A/WFM/833/3 Location Plan 5A/13A/833/1 General Arrangement 5A/13A/833/2 General Arrangement

2.2 Following the inspection, survey drawings are produced as below and enclosed in the Approval in Principle for Assessment.

AI1877/DWGS/1662/FIG 01 Elevations AI1877/DWGS/1662/FIG 02 Plan AI1877/DWGS/1662/FIG 03 Cross section

2.3 Following the inspection, defect diagrams are produced as below and enclosed in appendix B.

AI1877/DWGS/1662/FIG 04 Elevation defects
AI1877/DWGS/1662/FIG 05 Arch soffit, pier and abutment face defects
AI1877/DWGS/1662/FIG 06 Parapet defects

Date: January 2000

3.0 INSPECTION PROCEDURE

- 3.1 The inspection was undertaken on 02 December 1999. Reference was made to the Bridge Inspection Guide (HMSO 1983) and the Department of Transport standard BD21/97 and advice note BA16/97.
- 3.2 The visual inspection of the structure was carried out to determine the condition of the bridge. The inspection was carried out within touching distance. Where required, access to the higher level elements of the structure was gained using a ladder.
- 3.3 A full level and dimensional survey was undertaken. Details of the levels and dimensions taken during the inspection are indicated on Drawings No. AI1877/DRGS/1662/FIG 01, FIG 02 and FIG 03 which are included in the Approval in Principle for Assessment.
- 3.4 The extent and severity of all defects were recorded. The photographs in Appendix A and the defect diagrams (Drawing No. AI1877/DRGS/1662/FIG 04, FIG 05 and FIG 06) in Appendix B illustrate the defects.

Date: January 2000

4.0 CONDITION REPORT

4.1 Foundations

The foundations were not accessible during the inspection. No evidence of any movement or distress was detected.

4.2 Abutments

- 4.2.1 The substructure of the bridge consists of brickwork abutments and piers.
- 4.2.2 The abutments are in fair condition with the following defects identified:
 - A short 3mm wide crack in the north abutment face adjacent to ground level.
 - Leaching to both abutments.
 - 20mm to 30mm mortar loss to the south abutment.
 - Staining to the south abutment.
 - Vegetation growth on both abutments.
 - Minor area of lichen growth on the south abutment.

4.3 Piers

- 4.3.1 The piers appear to be in fair condition with the following defects identified:
 - Extensive mortar loss to both piers, average depth 5mm to 10mm.
 - Missing bricks at the east end of pier no. 2 (south pier).
 - Minor spalling at the east end of pier no. 1 (north pier).
 - Leaching to both piers (photograph no. 3).
 - Vegetation growth on pier no. 2.
 - Graffiti on pier no. 2 (photograph no. 4).
 - Minor area of lichen growth on both piers.

Date: January 2000

4.4 Arch barrels

- 4.4.1 The arch barrels are constructed from blue brick (Class 'B' engineering brick) with lime mortar. Five brick rings are visible in elevation.
- 4.4.2 Arch barrel no. 2 (central arch) is in good condition, whilst arch barrels no. 1 (north) and no. 3 (south) are in fair condition. The following defects have been identified:

Arch no. 1 (north arch)

- Extensive 5mm deep mortar loss.
- A 2mm wide crack in the mortar which zigzags across the barrel transversely.
- Brick loss and minor spalling.
- Minor leaching.
- General staining.

Arch no. 2 (central arch)

- Extensive mortar loss up to 10mm deep.
- Minor leaching.
- General staining.

Arch no. 3 (south arch)

- Extensive 5mm deep mortar loss.
- A 1mm wide crack in the mortar which zigzags across the barrel transversely.
- Minor spalling.
- . Minor leaching.
- General staining.

Date: January 2000

4.5 Spandrels, Wing Walls and Arch Faces

- 4.5.1 The brickwork is in fair condition with the following defects identified:
 - Both east and west elevations suffer from extensive mortar loss, average depth 20mm to 30mm.
 - Missing brick over arch no. 1 (west face).
 - Minor areas of leaching to arch faces and spandrels.
 - A 2mm wide crack in the west spandrel above arch no. 3.
 - Minor spalling to the face of arch no. 3.
 - Lichen growth on all wing walls.
 - Vegetation growth to both elevations.
 - General staining of brickwork.

4.6 Embankments

4.6.1 The embankments adjacent to the bridge show no signs of any significant erosion or slippage. The ground has been largely infilled either side of the bridge (note high level of fill on photograph no. 1)

4.7 Parapets

- 4.7.1 The brick parapets comprise 340mm thick brickwork and capping stone units at the parapet ends (east parapet only). No vertical movement joints were found along the parapets.
- 4.7.2 The west parapet is in poor condition. A large section of the parapet at the south end has been lost (photograph no. 9) as have 4 no. coping bricks over arch no. 1 (photograph no. 8). In addition there is extensive mortar loss to the outer face and cracking (photograph no. 10), leaching and vegetation growth to both outer and traffic faces.
- 4.7.3 The east parapet is in fair condition. Both faces suffer from extensive mortar loss, vegetation growth and minor lichen growth.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/833 ECC Bridge No. 1662

Structure: Wellinditch Bridge

Date: January 2000

4.8 Road Surface

4.8.1 The road surface over the bridge deck is in fair condition with rutting along the length of the bridge deck and minor cracking noted.

4.9 Waterproofing

4.9.1 It is not clear from the defects noted whether or not the bridge is waterproofed.

Date: January 2000

5.0 CONCLUSION

- 5.1 The structure is in fair condition overall. As well as element specific remedial work there are several areas of mortar loss through out the structure that require repair.
- 5.2 The abutments are in fair condition. Defects requiring repair are the cracking and the mortar loss.
- 5.3 The piers are in fair condition with the mortar loss and missing bricks requiring repair.
- 5.4 The arch barrels all require re-pointing. The brick loss to arch no. 1 should be replaced whilst the spalling to arch nos. 1 and 3 is not considered serious.
- 5.5 Extensive re-pointing is required to the spandrel walls and wing walls. The missing brick in the west spandrel should be replaced and the crack in the west spandrel repaired.
- 5.6 The west parapet is in poor condition and requires repairs at the south end and over arch no. 1. The east parapet is in fair condition. Both parapets require repointing.
- 5.7 The carriageway surfacing is in fair condition. The severity of the rutting should be monitored.
- 5.8 Based on the level and dimensional survey the structure has the following geometric features:-

	Arch no. 1	Arch no. 2	Arch no. 3
	(North)	(Central)	(South)
Skew span (L)	8.70m	8.65m	8.70m
Skew angle (α)	26°	26°	26°
Rise of the arch barrel (r _c)	1.425m	1.455m	1.460m
Rise at quarter points (r_a)	1.120m	1.000m	1.105m

Dimensions were obtained from levels and site measurements. See Approval in Principle for Assessment for drawings showing dimensions.

Structure: Wellinditch Bridge

Date: January 2000

5.9 Based on the inspection and record drawings each of the arch barrels has the following properties:

Barrel thickness

= 570 mm

Masonry strength

 $= 4.4 \text{ N/mm}^2$

(Based on BD 21/97 figure 4.2 assuming Class 'B' engineering bricks and lime mortar)

Backing material present up to a height of 1.4m above springing level. No structurally significant longitudinal cracking or ring separation.

5.10 Based on the inspection and the recommendations of BA16/97 Annex D, it is suggested that the following factors are used for MEXE analysis: -

		Arch no. 1 (North)	Arch no. 2 (Central)	Arch no. 3 (South)
Condition Factor	F_{cM}	0.9	1.0	0.9
Barrel Factor	F_b	1.0	1.0	1.0
Fill Factor	$\mathbf{F_f}$	0.7	0.7	0.7
Width Factor	$\mathbf{F}_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	\mathbf{F}_{mo}	0.9	0.9	0.9
Depth Factor	$\mathbf{F_d}$	0.8	0.8	0.8

For alternative analysis by the ARCHIE and MULTI computer programs, it is suggested that the overall condition factor F_c is based on the above factors and the recommendations of BD 21/97 6.21.

5.11 There is no Statutory Undertaker's plant present on the structure.

Structure: Wellinditch Bridge

Date: January 2000

6.0 RECOMMENDATIONS FOR ASSESSMENT

- The information collected from the site inspection, with respect to defects affecting the structural integrity of the bridge, should be incorporated into the Approval in Principle. Defects affecting the assessment are described in section 5.0. It is recommended that, for the Modified MEXE and ARCHIE analyses, the factors in section 5.10 should be adopted. No other allowance need be made for structural deterioration in the assessment calculations.
- 6.2 For the assessment, the geometrical properties and material strengths in section 5.8 and 5.9 should be adopted.
- 6.3 For the assessment, axle lift-off should be considered.
- Abutments, piers, wing walls and foundations should be assessed qualitatively in accordance with BD 21/97 Chapter 8.
 - Note that the following are maintenance recommendations and will not affect the proposed assessment.
- 6.5 The weathered, eroded and missing areas of brickwork should be replaced or repaired, unless specified otherwise. The cracks in the structure should also be repaired. Priority should be given to the reconstruction of the west parapet.

Structure: Wellinditch Bridge

Date: January 2000

APPENDIX A

Photographs

Photograph no. 1 – West elevation of Wellinditch Bridge

Photograph no. 2 - View over bridge looking north

Photograph no. 3 – Leaching to pier no. 1 (north face)

Photograph no. 4 – Graffiti to pier no. 2 (north face)

Photograph no. 5 - Cracking and spalling to soffit of arch no. 1

Photograph no. 6 - Cracking and leaching to soffit of arch no. 3

Photograph no. 7 - Leaching to soffit of arch no. 3

Photograph no. 8 - Missing bricks to west parapet over arch no. 1 (north arch)

Photograph no. 9 – West parapet (south end)

Photograph no. 10 - Cracking to traffic face of west parapet

APPENDIX B

Defect Diagrams

ECC ASSESMENT CONTRACT 3 - RAIL PROPERTY Ltd BRIDGES DETAIL OF STANDARD KEY

<u>KEY</u>	
\bigotimes	Damp concrete/brickwork/stonework
	Leaching
	Dry water staining
+ + + +	Hollow areas (tapping survey)
	Corrosion
	Algae
	Lichen
	Calcareous deposits
	Spalling
	Pointing loss
	Vegetation growth
00000	Honeycoming
C=0.3	Crack width in mm
R	Area of repair
N	Area of new brick/stonework
	Efflorescence
7 7 7 7 7 7 7 7 7 7	Frost damage

0 8 C=5mm 0 C € 6mm 8 4 DO NOT SCALE Vegetation growth out of top of wall C=3-8mm ECC Bridge No. 1662 Rail Property Board No. WFM/833 Notes: All Dimensions in mm

WEST PARAPET INSIDE FACE

(

4

EAST PARAPET INSIDE FACE

Se when.	NIS	SOLUT

WELLINDITCH BRIDGE, STOW MARIES PARAPET DEFECTS

ECC ASSESSMENT CONTRACT 3
RAIL PROPERTY LTD BRIDGES

MIST7/DWGS/1662/fig06

APPENDIX C

Statutory Undertakers

New Roads and Street Works Act (NRSWA) notices have been issued to the following companies. The responses are summarised below:

Company	Service
Street Lighting	No existing plant within the vicinity of the bridge.
British Telecom	No existing plant within the vicinity of the bridge.
Cable & Wireless	No existing plant within the vicinity of the bridge.
Energis	No existing plant within the vicinity of the bridge.
Transco	No existing plant within the vicinity of the bridge.
Eastern Electricity	No existing plant within the vicinity of the bridge.
National Grid	No existing plant within the vicinity of the bridge.
Essex and Suffolk Water	No existing plant within the vicinity of the bridge.
Anglian Water	No existing plant within the vicinity of the bridge.
Environment Agency	No comment.

ESSEX COUNTY COUNCIL ASSESSMENT CONTRACT 3

ASSESSMENT REPORT FOR THE ASSESSMENT OF WELLINDITCH BRIDGE

ECC BRIDGE NO. 1662 RAIL PROPERTY Ltd BRIDGE NO. WFM/833

Essex County Council
Transportation and Operational Services Division
County Hall
Chelmsford
Essex
CM1 1QH

Rail Property Ltd Room C5 Hudson House York YO1 6HP WS Atkins Consultants - Essex Threadneedle House 9 - 10 Market Road Chelmsford Essex CM1 1JQ

Copy No. 1 Version No. 1.0

Structure: Wellinditch Bridge

Date: May-2000

Assessment Report Index

Section	Description	Page No.
	Executive Summary	
	Form BA	
	Form BAA	
1	Introduction	1
2	Conclusions of Inspection Report	2
3	Assessment Methods and Findings	3
4	Conclusions	4
	Appendix A Summary Results Table	
	Appendix B Assessment Calculations	
	Appendix C Approval in Principle and Inspection for Assessment	

Structure: Wellinditch Bridge

Date: May-2000

EXECUTIVE SUMMARY

Wellinditch Bridge, to the north of South Woodham Ferrers, has been assessed in accordance with the Approval in Principle dated 27 March 2000. This is situated in appendix C of this report.

The structure consists of three skew span brick arches supported on brick abutments and piers. The arches each have clear skew spans of 8.70m, 8.65m and 8.70m with an angle of skew of 26°. The parapets are brick. There is no weight restriction on the structure.

Overall the structure is in fair condition.

The results for the whole structure are based on the MULTI mechanism method computer program. Results for the individual arches are based on the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. The abutments, wing walls and foundations have been assessed qualitatively.

OVERALL STRUCTURAL CAPACITY

40 TONNES

The load carrying capacity of the main structural elements is listed below.

Spans 1 to 3

Arches:

40 Tonnes Assessment Live Loading

Piers:

40 Tonnes Assessment Live Loading

Sub-structures, foundations, wingwalls and spandrel walls:

A qualitative assessment of the abutments, foundations and wingwalls indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment

Strengthening Measures

No strengthening measures are required.

FORM 'BA' (BRIDGES)

GC/TP0356

Appendix: 5 Issue: 1 Revision: A Date: Feb 93

CERTIFICATION FOR ASSESSMENT CHECK

STRUCTURE / LINE NAME WELLINDITCH BRIDGE CATEGORY OF CHECK 2

ELR / STRUCTURE NO WFM/833

I certify that reasonable professional skill and care have been used in the assessment of the above structure with a view to securing that:

- (1) It has been assessed in accordance with the Approval in Principle (where appropriate) as recorded on Form AA approved on 27 March 2000
- (2) It has been checked for compliance with the following principle British Standards, Codes of Practice and Assessment standards. (SEE TAS SCHEDULE IN AIP)

List any departures from the above and additional methods or criteria adopted, with reference and justification for their acceptance (commenting on the results if appropriate).

NONE

CATEGORY 2 AND 3 (NOTE: CATEGORY 1 CHECK MUST ALSO BE SIGNED)

(ASSESSOR)

29 March 2000

DIRECTOR OF THE FIRM OF CONSULTING ENGINEERS TO WHOM THE ASSESSOR IS RESPONSIBLE

(ASSESSMENT CHECKER) 29 March 2000

DIRECTOR OF THE FIRM OF CONSULTING ENGINEERS TO WHOM CHECKER IS RESPONSIBLE

FORM 'BAA' (BRIDGES)

GC/TP0356

Appendix: 6 Issue: 1 Revision: A Date: Feb 93

CERTIFICATION FOR ASSESSMENT CHECK

	T OUEOU		
NOTIFICATION OF ASSESSMEN	LCHECK		
STRUCTURE NAME / ROAD NO.	WELLINDITCH BR	IDGE	
LINE NAME	(DISUSED)		
ELR CODE / STRUCTURE NO.	WFM/833	ESSEX COUNTY	COUNCIL No. 1662
The above bridge has been asses appended Form BA. A summary of as follows:	sed and checked in If the results of the	accordance with Stan assessment in terms	idards which are listed on the of capacity and restrictions is
STATEMENT OF CAPACITY			
	***************************************	40	tonnes
Critical member/s:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N/A	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N/A	••••••
RECOMMENDED LOADING RES	TRICTIONS	N/A	••••••
	TRICTIONS	N/A	•••••
RECOMMENDED LOADING RES	TRICTIONS	N/A	
RECOMMENDED LOADING RES	TRICTIONS	N/A	
RECOMMENDED LOADING RES		,	STRENGTHENING

Structure: Wellinditch Bridge

Date: May-2000

1.0 INTRODUCTION

- 1.1 Essex County Council (ECC) entered into an agreement with Rail Property Ltd to assess Rail Property Ltd owned bridges carrying publicly maintainable highways. WS Atkins Consultants Ltd Essex (WSAE) have been appointed by ECC to carry out the visual inspections and assessments of the bridges.
- 1.2 An Approval in Principle document was submitted and approved on 27 March 2000. This includes a detailed inspection for assessment report. This assessment report should be read in conjunction with the Approval in Principle and Inspection for Assessment Report.
- 1.3 An inspection of the structure was carried out on 02 December 1999. The inspection included a visual inspection and dimension survey to confirm structural details. The weather was dry, cold and windy during the inspection. The results of the inspection are presented in the inspection for assessment report which forms part of the Approval in Principle dated 27 March 2000.
- 1.4 A summary of the inspection report findings are listed in section 2 of this assessment report. This includes details of the defects to the bridge which affect the load carrying assessment of the structure.
- 1.5 Wellinditch Bridge carries an unclassified road over a dismantled railway to the north of South Woodham Ferrers in Essex OS Ref. TQ 582026 198688.
- 1.6 The structure consists of three skew span brick arches supported on brick abutments and piers. The arches each have clear skew spans of 8.70m, 8.65m and 8.70m with an angle of skew of 26°. The parapets are brick.
- 1.7 The carriageway is 5.7m wide with a 0.9m and 1.1m wide verge on the east and west side of carriageway respectively. The vertical alignment of the carriageway over the structure is a slight hog curve and the horizontal alignment is straight.
- **1.8** There is no weight restriction on the structure.

Structure: Wellinditch Bridge

Date: May-2000

2.0 CONCLUSIONS OF INSPECTION REPORT

Details of the key dimensions of the structure are shown on drawings AI1877/DWGS/1662/FIG 01, Fig 02 and FIG 03. These are included in the Approval in Principle document.

Details of the defects in the structure are shown on drawings AI1877/DWGS/1662/FIG 04 to FIG 06. These are situated in the inspection for assessment report which forms an appendix to the Approval in Principle.

The following is a summary of the defects listed in the inspection for assessment report.

- 2.1 Overall, the bridge is generally in fair condition.
- 2.2 Based on a visual inspection and the recommendations of BA 16/97 Annex D, the following factors for the Modified MEXE Method were adopted:

		Arch no. 1 (North)	Arch no. 2 (Central)	Arch no. 3 (South)
Condition Factor	F_{cM}	0.9	1.0	0.9
Barrel Factor	F_b	1.0	1.0	1.0
Fill Factor	$\mathbf{F_f}$	0.7	0.7	0.7
Width Factor	$\mathbf{F}_{\mathbf{w}}$	0.9	0.9	0.9
Mortar Factor	F_{mo}	0.9	´ 0.9	0.9
Depth Factor	F_d	0.8	0.8	0.8

For alternative analysis by the ARCHIE and MULTI computer programs, the overall condition factor F_c , based on the above factors and the recommendations of BD 21/97 6.21, has been adopted.

These factors were decided upon by the Engineer based on the inspection and the Standards listed in the Approval in Principle.

- 2.3 For the assessment axle lift-off should be considered.
- 2.4 Backing material has been assumed above the intermediate piers and abutments to levels indicated on Rail Property Ltd drawings 5A/13A/833/1 and 5A/13A/833/2, referenced in Section 2 of the Inspection for Assessment report.
- 2.5 The weathered, eroded and missing areas of brickwork should be replaced or repaired, unless specified otherwise. The cracks in the structure should also be repaired. Priority should be given to the reconstruction of the west parapet.
- 2.6 The abutments, wing walls and foundations showed little signs of distress and were assumed to be in sound condition.

Structure: Wellinditch Bridge

Date: May-2000

3.0 ASSESSMENT METHODS AND FINDINGS

3.1 The assessment of Wellinditch Bridge, to the north of South Woodham Ferrers, has been carried out in accordance with the Approval in Principle dated 27 March 2000. The following drawings, included in the Approval in Principle document have been used.

AI1877/DWGS/1662/FIG 01

Elevations

AI1877/DWGS/1662/FIG 02

Plan

AI1877/DWGS/1662/FIG 03

Cross section

3.2 The following assumptions have been made regarding material strengths.

Masonry Strength

4.4 N/mm2

3.3 Detailed results tables are situated in appendix A of this assessment report. Copies of the assessment calculations are situated in appendix B.

ARCHES

- 3.4 The individual arches have been analysed using the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches.
- 3.5 For the assessment axle lift-off has been considered.
- 3.6 Backing has been assumed above the intermediate piers and abutments as discussed in Section 2 of this report.
- 3.7 The arches were assessed at 40 TONNES Assessment Live Loading.

INTERMEDIATE PIERS

- 3.8 The whole structure was analysed as a multi span arch using the MULTI mechanism method computer program.
- 3.9 The piers were assessed at 40 TONNES Assessment Live Loading.

ABUTMENTS, WING WALLS AND FOUNDATIONS

3.10 A qualitative assessment of the abutments, wing walls and foundations indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment.

Structure: Wellinditch Bridge

Date: May-2000

4.0 CONCLUSIONS

4.1 Wellinditch Bridge, to the north of South Woodham Ferrers, has been assessed in accordance with the Approval in Principle dated 27 March 2000.

4.2 The results for the whole structure are based on the MULTI mechanism method computer program. Results for the individual arches are based on the modified MEXE method, detailed in BD 21/97 and BA 16/97, and the ARCHIE computer program. As the fill depth over the arch is less than the arch barrel thickness for all 3 no. spans, the higher capacity of the ARCHIE and MEXE results will be adopted for the individual arches. A summary of the results is listed below.

4.3 Spans 1 to 3

Arches:

40 tonnes

Piers:

40 tonnes

Parapets:

The parapets do not conform to current standards and have not

been assessed.

4.4 Abutments, wing walls and foundations

A qualitative assessment of the abutments, wing walls and foundations indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment. Spandrel walls are assessed also at 40 Tonne.

4.5 The inspection for assessment showed that the structure requires minor maintenance. Details are included in section 6 of the inspection report.

4.6 Strengthening Requirements

No strengthening measures are required.

Structure: Wellinditch Bridge

Date: May-2000

APPENDIX A

SUMMARY RESULTS TABLES

ECC Bridge No. 1662

Structure: Wellinditch Bridge

Date: May-2000

Analysis Results: Masonry Arch Analysis.

Span Refere	nce	North Arch	North Arch	Central Arch	Central Arch
Method Used		MEXE	ARCHIE/ MULTI	MEXE	ARCHIE/ MULTI
Single Span	Analysis - No Axle Lift	Off			
Allowable	Single Axle Load	27.6t	>11.5t	32.5t	>11.5t
Axle	Double Axle Load	17.9t	>10t	21.1t	>10t
Loads	Triple Axle Load	15.9t	>8t	18.8t	>8t
AAL Multi Span A	Double Axle Load Analysis (Assuming Slend	13.2t	>11.5t	15.6t	>11.5t
	bal Capacity	N/A	40t	N/A	40t
				/	
Maximum (Gross Vehicle Weight	40t	40t	40t	40t
Assessment	t Live Load Rating	40t	40t	40t	40t
		N/A	N/A	N/A	

Comments

- Axle lift off has been considered.
- Backing material has been assumed above the intermediate piers and abutments to levels indicated on Rail Property Ltd drawings 5A/13A/833/1 and 5A/13A/833/2, referenced in Section 2 of the Inspection for Assessment report

Rail Property Ltd

ECC Bridge Assessment Contract No. 3

Rail Property Bridge No. WFM/833

ECC Bridge No. 1662

Structure: Wellinditch Bridge

Date: May-2000

Analysis Results: Masonry Arch Analysis.

Span Reference Method Used		South Arch	South Arch	
		MEXE	ARCHIE/ MULTI	
Single Span	Analysis – No Axle Lift	Off		
Allowable	Single Axle Load	21.4t	>11.5t	
Axle	Double Axle Load	13.9t	>10t	
Loads	Triple Axle Load	12.4t	>8t	
Single Span AAL	Analysis – Axle Lift Off Double Axle Load	10.3t	>11.5t	
AAL		10.3t	>11.5t	
AAL Multi Span	Double Axle Load	10.3t	>11.5t	
AAL Multi Span	Double Axle Load Analysis (Assuming Slen	10.3t		
AAL Multi Span . Overall Glo	Double Axle Load Analysis (Assuming Slen	10.3t		

Comments

HB Rating

- Axle lift off has been considered.
- Backing material has been assumed above the intermediate piers and abutments to levels indicated on Rail Property Ltd drawings 5A/13A/833/1 and 5A/13A/833/2, referenced in Section 2 of the Inspection for Assessment report

N/A

N/A

Structure: Wellinditch Bridge

Date: May-2000

APPENDIX B

ASSESSMENT CALCULATIONS

	CONTRING T 7	c = ៩រាជ្យសល់្	
ROVECT	ECC ASSESSMENT CONTRACT 3	S-Skolob Kara D-Ball	San San
6	MALLINOITCH BRIDGE		102
ILENAMI		Page	
IDE#NO7	A11877-73 1-1		
DEX:NO	E CALCULATIONASTICATIONATA	FOT ATTOREC	D) YITE
1	Summery		<u> 7/00</u>
2-5	ARCH MARYSIS DATA		2/00 2/00
6	NORTH ARCH - MEXE LENTRAL ARCH - MEXE		2/00
8	SOUTH ARCH - MEXE	<u> </u>	2/00
9-10	MEVE dummarby		2/00 2/00
1 - 13	ARCHIE ANALYSU ARCHIE OUTPUT DATA		2/00
14-26 27-47	MULTI ANALYLIS		2/00
			
			,
		+	
		Continued on Sheet	

WS/	Atkins	Project		MA ITTO TO TO	.	Job ref
			AULS JM EUT structure	CONTRACT	3	Caic sheet no
			UNOITIT			/ 2
		Drawin		Calc by	Date 2 /00	Check by Date
Ref			Calculations		is section	Output
	ARCH ANAC	เม	_			
	The following info The aleadurshian few pages	muta diogra	was taken	chaled in	the rat	
	Skew span (L) Skew angle (α) Rise of the arch bar Rise at quarter poin		Arch no. 1 (North) 8.70m 26° 1.425m 1.120m	Arch no. 2 (Central) 8.65m 26° 1.455m 1.000m	Arch no. 3 (South) 8.70m 26° 1.460m 1.105m	
	Condition Factor Barrel Factor Fill Factor Width Factor Mortar Factor Depth Factor	F _{cM} F _b F _f F _w F _{mo} F _d	North Arch 0.9 1.0 0.7 0.9 0.9 0.8	Centre A 1.0 1.0 0.7 0.9 0.9 0.8	arch Sou	th Arch 0.9 1.0 0.7 0.9 0.9
A:	xle lift-off should be con	sidered.				
		•		:		
	Backing level	1.0	1.1		ve springing l	evel
	Masonry self wei Fill self weight Surfacing self we	ght ight pressure	record drawings	21kN/m ³ 19kN/m ³ 23kN/m ³ 30° 0.3 4.4 N/mn	n ²	
٠.	wasoniy suengu			~**		
	Araches Semi-cu	r(uver	IN JAMPA			

ECC Bridge No.

1662

Rail Property Board No. WFM/833

ARCH No.2 (CENTRAL ARCH)
IDEALISATION DIAGRAM
NTS

WELLINDITCH BRIDGE, STOW MARIES IDEALISATION DIAGRAM ARCH 2

DRWG.NO.	Al1877/1662/fig08	
CAD NO.	N:1877/1662/fig08	
SCALES	NTS	

	SCALES	NTS			
	DATE JAN	00	DRAWN/TRACE		
	DATE JAN	00	CHECKED 1		
-	DATE	77-214	AUTHORISED		

(BA 16/97)

ARCH ASSESSMENT TO MODIFIED MEXE

Structure Name: WELLINDITH - NORTH MICH

1. DIMENSIONS

$$L = 8.700_{m}$$

$$rc = 1.425_{m}$$

$$rq = 1.120_{m}$$

$$d = 0.570_{m}$$

$$h = 0.520_{m}$$

$$h + d = 1.090_{m}$$

2. PROVISIONAL ASSESSMENT LOADING

PAL =
$$52.8$$
 Tonne

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{8.700}{1.47} = \frac{6.11}{1.47}$$
 (Fig. 3/3)

4. PROFILE FACTOR

$$rq = 1.120 = 0.79$$
 (Fig. 3/4)

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \frac{(Fb.d) + Ff.h}{d + h} = \frac{\left(1.0 \times 0.57\right) + \left(0.7 \times 0.52\right)}{0.570 + 0.520}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 0.9 \times 0.8 \times 0.9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

10	
4	Tonne

11. CONCLUSIONS:

Date: 11 / 2 /00

H.STRUCTURWASTERVSSESSMEXE

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: WELLINDITCH - SOUTH MRCH

1. DIMENSIONS

$$L = 8.700_{m}$$

$$rc = 1.160_{m}$$

$$rq = 1.105_{m}$$

$$d = 0.370_{m}$$

$$h + d = 0.390_{m}$$

2. PROVISIONAL ASSESSMENT LOADING

3. SPAN / RISE FACTOR

$$\frac{L}{rc} = \frac{8.700}{1.1.60} = \frac{5.96}{1.1.60}$$
 (Fig. 3/3)

Fsr =
$$0.75$$

4. PROFILE FACTOR

$$\frac{\text{rq}}{\text{rc}} = \frac{1.100}{1.1.60} = \frac{0.76}{0.76} \text{ (Fig. 3/4)}$$

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \frac{(Fb.d) + Ff.h}{d+h} = \frac{\left(1.0 \times 0.57\right) + \left(0.7 \times 0.39\right)}{0.57 + 0.39}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$Fj = Fw.Fd.Fmo = 0.9 \times 0.8 \times 0.9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

Tonne

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT)

LO Tonne

(Table 3/6)

e po la comita de comita de la comita del la comita del la comita della comita dell

11. CONCLUSIONS:

ADEQUATE (APACITY FIR &0 TOWNE VEHICLE

Assessed By:

Signed:

WS/F	Atkins	Project ECC As. Part of struct	ELL ASSESSMENT CONTRACT 3				Job ref A1 1877 /7 Calc sheet no re	
		WELLIA	OMH			/ /		
		Drawing ref	C	alc by	2 / 00	Check by	Date	
Ref		Calcul	ations			Ou	tput	
	MEXE ANAU	1615						
	CENTRAL AM						ě	
	ladare	MAL	Ar	Alkerble	Arle land			
ا، بر	Single Aske Load	21.16	1.24	37	2·St			
th Off {	Donble Arle	21.16	1.00	21	·14			
\	Triple Axle	21.16	0.89	18	·8 E			
H off	Double Axle	21.16	0.74	19	:.6t			
	:. Max & SOUTH ARCH	roes which	neight	= 40 ho	nneg ,			
	Lood are	MAL	A _f	Allamble	Ark Lond			
	Single Arle	13.9Ł	1:54	21	ut			
off {	Duble Ark	13.91	1.00	13.	94			
	Tople Axle	13.91	0.89	12.	4t			
th off	Double A.h	13.9t	0.74	10	·34			
	Mox	rous schiele	neight =	40 hornes) (
							e	
			متعلق الماليان الما					

The first survival properties the second survival and survival and the second survival and the second

WSAL-042 Hev 1 Dec. 89

The state of the state of

Northarc

Not chare							
() Span Depth of fill Ring depth Position of backing	8700 mm 520 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1425 mm 100 mm 1 0 mm				
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3				
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2				
Load Lane width Required ring depth H Left V Left Comp. zone at hinge 2	Single Axl 1864mm 436 mm 349 kN/m 322 kN/m 88 mm		1.31 365 kN/m 185 kN/m .3				
Hinges 1 AT 1 2 2	AT 6	3 AT 14	4 AT 21				

Param (mn) .segment								
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional		
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press		
1	-5.7	-15.2	0	0	0	0		
2	~5.8	-14.1	0	0	0	0		
3	-5.8	-12.4	0	5	0	0		
4	-5.8	-10.6	0	-20.4	0	0		
5	-5.8	-9.1	1.7	-62.4	7.6	0		
6	-5.8	-7.9	1.1	-76	7.4	0		
7	-5.8	-6.9	. 8	-41.3	3.1	0		
8	-5.8	-6.1	. 5	-4.5	.2	0		
9	-5.8	-5.5	.3	0	0	0		
10	-5.8	-5.2	.1	0	0	0		
11	-5.8	-5.2	1	0	0	0		
12	-5.8	-5.5	3	0	0	1		

-.3 -.5 -.8 -1.1 -1.7 0 -5.8 -5.8 -5.8 -6.1 -6.9 -7.9 -.3 -.6 -.9 0000000 13 14 15 16 -9.1 0 0 0 17 -5.8 -10.6 -5.8 -5.8 -5.7 -12.4 18 -14.1 -15.2 19 20

Northarc

	NOTE.	narc	
() Span Depth of fill Ring depth Position of backing	8700 mm 520 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1425 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Triple Axl	e:24t:No Lift-off at 700	0
Required ring depth	418 mm	Geometric F.O.S	1.36
H Left	394 kN/m	H Right	381 kN/m
V Left	197 kN/m	V Right	398 kN/ m
Comp. zone at hinge 2	94 mm	Factor on pass. press.	.3
Hinges			4 389 03
1 AT 1 2 2	AT 8	3 AT 16	4 AT 21

Param	(mn)	.segment

Laram/mm	i, . sedilei		_			
		Vertical			Horizontal	
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.7	-15.2	0	0	0	0
2	-5.8	-14.1	0	0	0	0
3	-5.8	-12.4	0	0	0	0
4	-5.8	-10.6	0	0	0	0
5	-5.8	-9.1	1.7	0	0	1.2
6	-5.8	-7.9	1.1	0	0	.9
7	-5.8	-6.9	. 8	0	0	. 6
8	-5.8	-6.1	.5	0	0	.3
9	-5.8	-5.5	.3	0	0	.1
10	-5.8	-5.2	.1	0	0	0
11	-5.8	-5.2	1	5	0	0
12	-5.8	-5.5	3	-15.4	5	0
13	-5.8		5	-35.3	-1.9	0
14	-5.8	-6.9	8	-37.4	-2.8	0
15	-5.8	-7.9	-1.1	-43.7	-4.2	0
16	-5.8	-9.1	-1.7	-54.5	-6.6	0
17	-5.8	-10.6	0	-45.2	0	0
18	-5.8	-12.4	0	-27.1	0	0
19	-5.8	-14.1	0	-19.8	0	0
20	-5.7	-15.2	0	-14.6	0	0

Northarc

2.2			
() Span Depth of fill Ring depth Position of backing	8700 mm 520 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1425 mm 100 mm 1 0 mm
Fill density Surfacing density	22.8 kN/m [^] 40.3 kN/m [^]	3Masonry density	24.2 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Single Axl	e:11.5t at 2000	
Required ring depth H Left V Left Comp. zone at hinge	409 mm 391 kN/m 355 kN/m		1.39 405 kN/m 217 kN/m .3
Hinges	2 Nm 6	2 እጥ 1 <i>ል</i>	<i>ል</i> እጥ 21

Param	(mri)	.segment
-------	-------	----------

Paramili	n).segmen	ıı.				
		Vertical			Horizontal	
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-6.5	-18.5	0	0	0	0
2	-6.7	-17.2	0	0	0	0
3	-6.7	-15.2	0	5	0	0
4	-6.7	-13.3	0	-20.4	0	0
5	-6.7	-11.6	2.1	-62.4	7.6	0
6	-6.7	-10.1	1.5	-76	7.4	0
7	-6.7	-8.9	1	-41.3	3.1	0
8	-6.7	-7.9	.6	-4.5	. 2	0
9	-6.7	-7.2	.3	0	0	0
10	-6.7	-6.9	.1	0	0	0
11	-6.7	-6.9	1	0	0	0
12	-6.7	-7.2	3	0	0	1
13	-6.7	-7.9	6	0	0	4
14	-6.7	-8.9	-1	0	0	8
15	-6.7	-10.1	-1.5	0	0	-1.2
16	-6.7	-11.6	-2.1	0	0	-1.5
17	-6.7	-13.3	0	0	0	0
18	-6.7	-15.2	0	0	0	0
19	-6.7	-17.2	0	0	0	0
20	-6 5	-18 5	n	n	٥	0

4)	Centa	arch	
() Span Depth of fill Ring depth Position of backing	8650 mm 490 mm 570 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1455 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Double Axl	e:20t:Left Heavy at 16950	
Required ring depth	416 mm	Geometric F.O.S	1.37
H Left	349 kN/m	H Right	337 kN/m
V Left	185 kN/m	V Right	357 kN/m
Comp. zone at hinge 2	82 mm	Factor on pass. press.	.3
Hinges			
1 AT 1 2 A	T 8	3 AT 15	4 AT 21

Daram	(mm)	. segment
Param	CHILLY.	. sequent

Earam (m	m, . segme	110				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.7	-15.2	0	0	0	0
2	-5.8	-13.9	0	0	0	0
3	-5.8	-12.2	0	0	0	0
4	-5.8	-10.5	0	0	0	0
5	-5.8	-9	1.7	0	0	1.2
6	-5.8	-7.7	1.2	0	0	. 9
7	-5.8	-6.7	.8	0	0	.6
8	-5.8	-5.8	.5	0	0	.3
9	-5.8	-5.3	.3	0	0	.1
10	-5.8	-5	.1	0	0	0
11	-5.8	-4.9	1	0	0	0
12	-5.8	-5.2	3	1	0	0
13	-5.8	-5.7	5	-17.4	9	0
14	-5.8	-6.5	8	-57.7	-4.4	0
15	-5.8	-7.5	-1.1	-62.1	-6.2	0
16	-5.8	-8.8	-1.6	-30.7	-3.8	0
17	-5.8	-10.2	0	-17.5	0	0
18	-5.8	-11.9	0	-23.5	0	0
19	-5.8	-13.6	0	-22.5	0	0
20	-5.7	-14.9	0	-14.9	0	0

Centarch.

(1)		Centa	ren			
() Span Depth of fill Ring depth Position of backing		8650 mm 490 mm 570 mm	Ring depth	surfacing n factor mortar loss	1459 100 1 0 mm	
Fill density Surfacing density		19 kN/m ³ 23 kN/m ³	Masonry de	ensity	21 l	kN/m^3
Phi for fill		30 deg	Masonry st	rength	4.4	N/mm^2
Load Lane width		Double Axle	e:20.3t:Rig	ght Lift-off at	169	50
Required ring depth		460 mm 360 kN/m	Geometric	F.O.S	1.24	4 kN/m
V Left						kN/m
Comp. zone at hinge	2	87 mm	_	pass. press.	. 3	•
Hinges 1 AT 1	2 A	r 8	3 AT	16	4 AT	21

Param (m	Param (mn) .segment						
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional	
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press	
1	-5.7		0	0	0	0	
2	-5.8	-13.9	0	0	0	0	
3	-5.8	-12.2	0	0	0	0	
4	-5.8	-10.5	0	0	0	0	
5	-5.8	-9	1.7	0	0	1.2	
6	-5.8	-7.7	1.2	0	0	. 9	
7	-5.8	-6.7	.8	0	0	.6	
8	-5.8	-5.8	.5	0	0	.3	
9	-5.8	-5.3	. 3	0	0	.1	
10	-5.8	-5	.1	0	0	0	
11	-5.8	-4.9	1	0	0	0	
12	-5.8	-5.2	3	0	0	0	
13	-5.8	-5.7	5	-3.4	2	0	
14	-5.8	-6.5	8	-39.8	-3.1	0	
	-5.8	-7.5	-1.1	-78.8	-7.9	0	
16	-5.8	-8.8	-1.6	-67.4	-8.4	0	
17	-5.8	-10.2	0	-26.1	0	0	
18	-5.8	-11.9	0	-8.2	0	0	
	-5.8		0	-9.5	0	0	
20	-5.7	-14.9	0	-8.7	0	0	

Southard

4	South	arc	
() Span Depth of fill Ring depth Position of backing	8700 mm 390 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1460 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m ³
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Double Axl	e:20t:Left Heavy at 27350	
Required ring depth	455 mm	Geometric F.O.S	1.25
H Left	326 kN/m	H Right	312 kN/m
V Left	170 kN/m	V Right	366 kN/m
Comp. zone at hinge 2	78 mm	Factor on pass. press.	.3
Hinges			
	TT 0	ጋ አጥ 16	<i>ለ</i> አጥ ኃገ

Param (mn').segment
Parami	шцт) . Sedment

•	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5. 7	-14.8	0	0	0	0
2	-5.8	-13.5	0	0	0	0
3	-5.8	-11.7	0	0	0	0
4	-5.8	-9.9	0	0	0	0
5	-5.8	-8.3	1.5	0	0	1.1
6	-5.8	-7	1.1	0	0	.8
7	-5.8	-5.9	.7	0	0	. 5
8	-5.8	-5	.4	0	0	.3
9	-5.8	-4.4	.2	0	0	.1
10	-5.8	-4	.1	0	0	0
11	-5.8	-4	1	0	0	0
12	-5.8	-4.2	2	0	0	0
13	-5.8	-4.8	4	4	0	0
14	-5.8	-5.6	6	-22.4	-1.7	0
15	-5.8	-6.6	-1	-64.2	-6.4	0
16	-5.8	-7.9	-1.5	-67.3	-8.3	0
17	-5.8	-9.4	0	-35.2	0	0
18	-5.8	-11.2	0	-19.2	0	0
19	-5.8	-12.9	0	-23.7	0	0
20	-5.7	-14.2	0	-22.3	0	0

Southard

43	South	darc	
() Span Depth of fill Ring depth Position of backing	8700 mm 390 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1460 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2
Load Lane width	Double Axl	e:20.3t:Right Lift-off at	26850
Required ring depth	500 mm	Geometric F.O.S	1.14
H Left	377 kN/m	H Right	358 kN/m
V Left	182 kN/m	V Right	371 kN/m
Comp. zone at hinge 2	91 mm	Factor on pass. press.	.3
Hinges			
1 AT 1 2.	AT 8	3 AT 16	4 AT 21

Param (mn I	l cen	ment

Param (m	n).segme					
			Horizontal			
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.7	-14.8	0	0	0	0
2	-5.8	-13.5	0	0	0	0
3	-5.8	-11.7	0	0	0	0
4	-5.8	-9.9	0	0	0	0
5	-5.8	-8.3	1.5	0	0	1.1
6	-5.8	-7	1.1	0	0	. 8
7	-5.8	-5.9	.7	0	0	.5
8	-5.8	-5	. 4	0	0	.3
9	-5.8	-4.4	.2	0	0	.1
10	~5.8	-4	.1	0	0	0
11	-5.8	-4	1	0	0	0
12	-5.8	-4.2	2	0	0	0
13	-5.8	-4.8	4	-3	2	0
14	-5.8	-5.6	6	-47	-3.6	0
15	-5.8	-6.6	-1	-95.2	-9.6	0
16	-5.8	-7.9	-1.5	-74.7	-9.2	0
17	-5.8	-9.4	0	-22.2	0	0
18	-5.8	-11.2	0	-9.1	0	0
19	-5.8	-12.9	0	-11.4	0	0
20	-5.7	-14.2	0	-9.9	0	0

arch width	% 8.330 m 🥸		HB parameters		
Fill Depth	∕0.490 m				
width2 (2 lanes loaded)	3.145 m		4.165 m		
width1 (1 lane loaded)	3.790 m		4.990 m		
gfl1 (BD 21/97, cl 6.20)	ARS ES 300 255		28 2000		
gfl2 (BD 21/97, cl 6.20)	4884U900BBB				
Fcm	1.000				
Fi	0.650				.,
g	48489800286				
9	The state of the s				
Lift-Off Factors (BD 21/97	7 Table 6.2)		HB units	Axie loa	d (kN/m)
dlift1*	128 CHAP			1 lane	2 lanes
dlift2	030		(520 to 100 and 1	92.49	110.81
tlifta1	20 S		100 20 10 Marks	123.32	147.75
tlifta2*	5 5 k 00 - 2 5 1		25.00	154.15	184.69
tlifta3	30505056		\$1000 CO	184.99	221.63
tliftb:1*	90.201128 25 0		200 3500 and	215.82	258.56
tliftb2	28 St. 1700 365		300000	246.65	295.50
tliftb3	0.50 %		38945:00 ES	277.48	332.44
unbo	AND MAY OF SHIRE		AND DESCRIPTION OF THE PARTY OF	2,7,30	J
AAL (t)		No.	Lift Off	Lift	-Off
70-10	}		ad (kN/m)	Axle loa	
•		1 lane	2 lanes	1 lane	2 lanes
A STAIN SAN SAN SERVER		155.70	187.63	155.70	187.63
Section SASSES		142.16	171.32	142.16	171.32
9 00 SA		121.85	146.84	121.85	146.84
745 2 57 7 (0 5) 4 5 6 6 6		94.77	114.21	94.77	114.21
\$30 (0.25 (3.50) \$200 (3.50)		74.47	89.74	74.47	89.74
ของกลัง		27.08	32.63	27.08	32.63
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	·		-		
e and Dur DAV and	Heavy Axle*	135.39	163.16	173.30	208.84
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Light Axle	75.66	91.18	37.83	45.59
STATE OF PAY	Heavy Axle*	128.62	155.00	164.64	198.40
	Light Axle	71.88	86.62	35.94	43.31
1	ı ı				
ASMO DASS	Heavy Axle*	121.85	146.84	155.97	187.96
	Light Axle	68.09	82.06	34.05	41.03
	Ĭ,				
	Out Axle 1	60.53	72.94		
24623 (8) 00 (1) (8) (2 465)	Mid Axle 2*	108.31	130.53		
1300	Out Axle 3	60.53	72.94		
	Out Axle 1	56.75	68.38	85.12	102.57
A PARTICIPATION OF THE	Mid Axle 2*	101.54	122.37	101.54	122.37
1350	Out Axle 3	56.75	68.38	28.37	34.19
<u> </u>	Out Axle 1	45.40	54.71	68.09	82.06
60000A(a) 535		81.24	97.90	81.24	97.90
700	Out Axle 3	45.40	54.71	22.70	27.35
	Out Axle 1*	108.31	130.53		
20 30 TA (5) 5 5 5 5		60.53	72.94		
1300	Out Axle 3	60.53	72.94		
			المتعرضية ا	400.5-	4=0.55
	Out Axle 1*	101.54	122.37	129.98	156.63
	Mid Axle 2	56.75	68.38	56.75	68.38
1350	Out Axle 3	56.75	68.38	28.37	34.19
			07.00	400.00	405.04
	Out Axle 1*	81.24	97.90	103.98	125.31
700		45.40 45.40	54.71 54.71	45.40 22.70	54.71 27.35
700	Out Axle 3	45.40	54.7 I	22.10	21.33

```
54.71
DA 19t (33t restrict)
155.00
1000
86.62
DA 19t (33t restrict)
155.00
1300
86.62
DA 19t (33t restrict)
155.00
1800
86.62
DA 18t (25t restrict)
146.84
1000
82.06
DA 18t (25t restrict)
146.84
1300
82.06
DA 18t (25t restrict)
146.84
1800
82.06
SA:10.5t (17t-33t restrict)
SA:9t (13t restrict)
146.84
SA:7t (10t restrict)
114.21
SA:5.5t (7.5t restrict)
89.74
SA:2t (3t restrict)
32.63
*□
```

```
27.35
DA 19t (33t restrict)
198.40
1000
43.31
DA 19t (33t restrict)
198.40
1300
43.31
DA 19t (33t restrict)
198.40
1800
43.31
DA 18t (25t restrict)
187.96
1000
41.03
DA 18t (25t restrict) 187.96
1300
41.03
DA 18t (25t restrict)
187.96
1800
41.03
SA:10.5t (17t-33t restrict)
171.32
SA:9t (13t restrict)
146.84
SA:7t (10t restrict)
114.21
SA:5.5t (7.5t restrict)
89.74
SA:2t (3t restrict)
32,63
*
```


Centarch.dat

```
1455
 8650
 20
 570
 1
 4
 21
 19
 30
 1
 657
 4.4
 8000
 9.95
 0
 100
 23
0,0,2515
379,269,2516
774,512,2517
1185,729,2518
1608,919,2518
2043, 1082, 2519
2488,1215,2519
2941,1320,2519
3399,1395,2518
3861, 1440, 2517
4325, 1455, 2515
4789,1440,2512
5251,1395,2509
5709,1320,2505
6162,1215,2501
6607, 1082, 2497
7042,919,2492
7465,729,2487
7876,512,2482
8271, 269, 2478
8650,0,2473
Southarc
-3.7
```

Centarch

WELLINDITCH BRIDGE - MULTI RESULTS

NO AXLE LIFT OFF

Hit enter	to continue	.:
Worst case load pos	itions for all load cases	
38:11.5t (40/44t)	DA 201 (38-40/441) @ 12000 DA 201 (38-40/441) @ 12500 TA (a) 22.51 (38-40/441) @ 13000 TA (b) 241 (38-40/441) @ 13000 TA (b) 181 (38-40/441) @ 12500 BA 181 (331 restrict) @ 13000 BA 181 (251 restrict) @ 13000 BA 181 (251 restrict) @ 13000 SA:91 (131 restrict) @ 13000 SA:5.51 (7.51 restrict) @ 14000	

11.5 tonne single axle – PASSES

Left H kN	span V kN	P Nr	ier I Force	Right H kN	span V kN	Offset from L	Load kN	σL kN∕m^2	σR kN∠n^2	
389 465	178 235	1 2	0 0	451 434	315 172	440 670	625 539	944 339	55 524	
			A	butnent	react	ions				
	Le	ft H	= 389 k	N V = 1	Z3 kN	at 1127 nm	from s	pringing		
	Ri	ght H	= 435 k	N V = 1	09 kN	at 620 mm	from sp	ringing.		

20t double axle; 1.3m spacing - PASSES

	·		HI	T ENTER	70 CU	NTINUE			
Left H kN	span U kN	P i Mr		light H kN	span V kN	Offset from L	Load kh	σL kN∕n^2	σR kN∕n^Z
334 411	186 237	1 2	0	398 36Z	335 170	447 795	652 539	967 79	76 783
			Аb	utnent	reacti	ons			
	Lef	t H=	334 kM	V = 1	16 kN	at 1131 nm	from s	pringing	
	Rig	ht H =	= 362 kM	U = 1	12 kM	at 522 mm f	ron sp	ringing.	

24t triple axle; arrangement 1 – PASSES

24t triple axle; arrangement 2 – PASSES

20t double axle; 1.3m spacing - PASSES

			HI	T ENTER	TO CO	AT INUE			***
Left 1 kM	span V kN	Pie Nr F	er R Torce		span V kN	Offset from L	Load kN	σL kN∠m^2	σR kN/m^2
308 392	180 201	1 2	0 0	371 362	349 159	440 666	660 493	998 317	59 472
			Ab	utment	reacti	ons `			
	Lef-	t H =	308 kM	U = 1	21 km	at 1061 mm	from s	pringing	
	Rig	ht H =	363 kN	V = 1	22 kN	at 597 mm f	ron sp	ringing.	

WS/At	ins		
	CALCULATION INDEX		
	C. C	= Caleumion &	
PROJECT	ECC AUGUSTMENT CONTRACT 3S	- Calculation, FA - Sketch - Calculation - Date	
PROJECI	CHECK (ALL)	- Critel	
(1.25) (2.25) (1.25)	22.04	25.0	
FILE NAM		÷(9,40)	
FILEENO	AI 1877-73 -		
	A TONIO PROPERTY AND A TONIO P	OFFICE INVASTOR	DATE:
INDEXINO	CARCOUCAMONT SINCE IS	3,500,000	
1-6	ARCH MANUTELLS DIATION		2/00
7	NORTH PARCH MEXE		2/00
9	SOUTH ARCH MEXE		2/00
10-	ARCHIE LANG WIDTH		2/00
11-14	ARCHIE DATA CHECK		2/00
18-25	ARCHIE OUTPUT DATA	_	2/00
26 -32	MULTI AMOUYELL		
,			
 			
	Co	ontinued on Sheet	

ECC Bridge No.

1662

Rail Property Board No. WFM/833 '

ARCH No.1(NORTH ARCH) IDEALISATION DIAGRAM NTS

WELLINDITCH BRIDGE, STOW MARIES
IDEALISATION DIAGRAM ARCH 1

DRWG.NO.	Al1877/1662/FIG07

CAD NO. N:1877/1662/fig07

SCALES NTS

DATE JAN 00 DRAWN/TI
DATE JAN 00 CHECKE

ECC Bridge No. 1662
Rail Property Board No. WFM/833

4

ARCH No.3 (SOUTH ARCH) IDEALISATION DIAGRAM NTS

WELLINDITCH BRIDGE, STOW MARIES
IDEALISATION DIAGRAM ARCH 3

DRWG.NO.	Al1877/	1662/fig09
CAD NO.	N:1877,	/1662/fig09
SCALES	NTS	
DATE JA!	4 00 h	DRAWN/TRACEI
	CAD NO.	DRWG.NO. A11877/ CAD NO. N:1877/ SCALES NTS DATE JAN 00

CHECKED

DATE JAN 00

ARCH ASSESSMENT TO MODIFIED MEXE

(BA 16/97)

Structure Name: WELLINDITCH-CENTRAL REAM NOZ

1. DIMENSIONS

2. PROVISIONAL ASSESSMENT LOADING

3. SPAN / RISE FACTOR

$$L = g.7 = S.98 \text{ (Fig. 3/3)}$$

4. PROFILE FACTOR

$$rq = 1.00 = 0.69$$
 (Fig. 3/4)

5. MATERIAL FACTOR

(Tables 3/1 & 3/2)

$$Fm = \frac{(Fb.d) + Ff.h}{d+h} = \frac{/ \times .57 + .7 \times .49}{.57 + .49}$$

6. JOINT FACTOR

(Tables 3/3, 3/4 & 3/5)

$$F_i = F_w.F_d.F_mo = 9 \times 8 \times 9$$

7. CONDITION FACTOR

(Para. 3.17 to 3.23)

8. MODIFIED AXLE LOAD

 $MAL = PAL \times Fsr \times Fp \times Fm \times Fj \times Fc$

9. AXLE LIFT-OFF FACTOR

(Fig. 3/5)

10. WEIGHT LIMIT ON ARCH (MAX GROSS VEHICLE WEIGHT) (Table 3/6)

Tonne

11. CONCLUSIONS:

check types.

. みらcessed By:

Signed:

Date: 15/2/00

The second secon

The second secon

```
1425
          8700
  20
  570
  1
  4
  21
  19
  30
  1
  660
  4.4
  8000
  0
  0
  100
 23
0,0,2515
384,263,2515
783,502,2515
1197,715,2515
1624,901,2515
2061,1060,2515
2508,1190,2515
2962, 1293, 2515
3422, 1366, 2515
 3885,1410,2515
<del>-</del>4350,1425,2515
 4815, 1410, 2515
 5278,1366,2515
5738,1293,2515
 6192,1190,2515
 6639, 1060, 2515
 7076,901,2515
 7503,715,2515
 7917,502,2515
8316, 263, 2515
 8700,0,2515
 Centarch
```

Northarc

1877/73

Southarc.dat

```
Southarc
 1460
 8700
 20
 570
 1
 4
 21
 19
 30
 1
 661
 4.4
 8000
 19.85
 0
 100
 23
0,0,2462
381,269,2458
779,514,2454
1192,732,2450
1618,922,2446
2056,1085,2442
2503, 1219, 2438
2958, 1324, 2433
3419,1400,2429
3883,1445,2425
4350,1460,2420 🗸
4817, 1445, 2415
5281,1400,2411
5742,1324,2407
6197,1219,2402
6644,1085,2398
7082,922,2394
7508,732,2390
7921,514,2386
8319,269,2382
8700,0,2378
-3.8 ⋅ ✓
```


Northarc

	1101 01	2102 02300.0				
() Span Depth of fill Ring depth Position of backing	8700 mm 520 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1425 mm 100 mm 1 0 mm			
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m ³			
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2			
Load Lane width	Double Axl	e:20.3t:Right Heavy at 1	500			
Required ring depth H Left V Left Comp. zone at hinge	419 mm 348 kN/m 369 kN/m		1.36 361 kN/m 186 kN/m .3			
Hinges 1 AT 1	2 AT 6	3 AT 14	4 AT 21			

Param (m	ii) . segillei		************	*******	Horizontal	Additional
		Vertical				
	Weight	Dead Load	Deadload		Live Load	
1	-5.7	-15.2	0	-18.7	0	0
2	-5.8	-14.1	0	-23.6	0	0
3	-5.8	-12.4	0	-21.4	0	0
4		-10.6	0	-19.6	0	0
5	-5.8	-9.1	1.7	-44.3	5.4	0
6	-5.8	-7.9	1.1	-67.1	6.5	0
7	-5.8	-6.9	.8	-48.3	3.7	0
8	-5.8	-6.1	.5	-9.9	.5	0
9	-5.8	-5.5	.3	0	0	0
10	-5.8	-5.2	.1	0	0	0
11	-5.8	-5.2	1	0	0	0
12	-5.8	-5.5	3	0	0	1
13	-5.8	-6.1	5	0	0	3
14	-5.8	-6.9	8	0	0	6
15	-5.8	-7. 9	-1.1	0	0	9
16	-5.8	-9.1	-1.7	0	0	-1.2
17	-5.8	-10.6	0	0	0	0
18	-5.8	-12.4	0	0	0	. 0
19	-5.8	-14.1	0	0	0	0
20	-5.7	-15.2	0	0	0	0

Northarc						
() Span Depth of fill Ring depth Position of backing	8700 mm 520 mm 570 mm 4	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1425 mm 100 mm 1 0 mm			
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m ³			
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2			
Load Lane width	Triple Axl	le:22.5t:Left Lift-off at	7000			
Required ring depth H Left V Left	424 mm 382 kN/m 192 kN/m	Geometric F.O.S H Right V Right	1.34 369 kN/m 363 kN/m			
Comp. zone at hinge 2	89 mm	Factor on pass. press.	.3			
Hinges 1 AT 1 2	AT 8	3 AT 15	4 AT 21			

Param (m	n).segmer	It				
	Stone	Vertical			Horizontal	
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.7	-15.2	0	0	0	0
2	-5.8	-14.1	0	0	0	0
3	-5.8	-12.4	0	0	0	0
4	-5.8	-10.6	0	0	0	0
5		-9.1	1.7	0	0	1.2
6	-5.8	-7.9	1.1	0	0	. 9
7	-5.8	-6.9	. 8	0	0	.6
8	-5.8	-6.1	.5	0	0	.3
9	-5.8	-5.5	.3	0	0	.1
10	-5.8	-5.2	.1	0	0	0
11	-5.8	-5.2	1	0	0	0
12	-5.8	-5.5	3	8	0	0
13	-5.8	-6.1	5	-25.2	-1.3	0
14	-5.8	-6.9	8	-62.7	-4.7	0
15	-5.8	-7.9	-1.1	-61.3	-5.9	0
16	-5.8	-9.1	-1.7	-32.9	-4	0
17	-5.8	-10.6	0	-23.3	0	0
18	-5.8	-12.4	0	-22.7	0	0
19	-5.8		0	-15.8	0	0
20	-5.7	-15.2	0	-8.9	0	0

Centarch

Centaron							
() Span Depth of fill Ring depth Position of backing	8650 mm 490 mm 570 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1455 mm 100 mm 1 0 mm				
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3				
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2				
Load Lane width Required ring depth H Left V Left	1953mm 472 mm 341 kN/m 366 kN/m	V Right	1.21 357 kN/m 180 kN/m				
Comp. zone at hinge 2	85 mm	Factor on pass. press.	. 3				
Hinges	т б	3 አጥ 1 <i>4</i>	4 AT 21				

Param ((mn)	.segment

raram (m	i, .aegiici				**	9 3 3 2 4 2 4 4 4 7 3
		Vertical	Horizontal			
	Weight	Dead Load	Deadload		Live Load	
1	-5.7	-15.2	0	-8.9	0	0
2	-5.8	-13.9	0	-9	0	0
3	-5.8	-12.2	0	-11.7	0	0
4	-5.8	-10.5	0	-42	0	0
5	-5.8	-9	1.7	-77.3	9.7	0
6	-5.8	-7.7	1.2	-71.8	7.2	0
7	-5.8	-6.7	. 8	-27.8	2.1	0
8	-5.8	-5.8	. 5	-1.1	. 1.	0
9	-5.8	-5.3	. 3	0	0	0
10	-5.8		.1	0	0	0
	-5.8	-4.9	1	0	0	0
	-5.8	~5.2	3	0	0	1
13	-5.8	-5.7	5	0	0	-,3
14	-5.8	-6.5	8	0	0	6
15	-5.8	-7.5	-1.1	0	0	9
16	-5.8	-8.8	-1.6	0	0	-1.2
17	-5.8	-10.2	0	0	0	0
18	-5.8	-11.9	0	0	0	0
19	-5.8	-13.6	0	0	0	0
20	-5.7	-14.9	0 .	0	0	0

Southarc

Southare					
() Span Depth of fill Ring depth Position of backing		8700 mm 390 mm 570 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1460 mm 100 mm 1 0 mm	
Fill density Surfacing density		19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m ³	
Phi for fill		30 deg	Masonry strength	4.4 N/mm^2	
Load Lane width		Single Axl	e:11.5t at 21850		
Required ring depth		455 mm	Geometric F.O.S	1.25	
H Left		320 kN/m	H Right	336 kN/m	
V Left		308 kN/m		172 kN/m	
Comp. zone at hinge	2	81 mm	Factor on pass. press.	.3	
Hinges					
1 AT 1	2 A'	Г 6	3 AT 14	4 AT 21	

Daram	(mm)	.segment
Param	t mm i	. seament

Faram (m	r, .segmer		_			
		Vertical			Horizontal	
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	-5.7	-14.8	0	0	0	0
2	-5.8	-13.5	0	0	0	0
3	-5.8	-11.7	0	1	0	0
4	-5.8	-9.9	0	-16.3	0	0
5	-5.8	-8.3	1.5	-61.5	7.6	0
6	-5.8	-7	1.1	-77.8	7.8	0
7	-5.8	-5.9	.7	-39.5	3	0
8	-5.8	-5	. 4	-3	. 2	0
9	-5.8	-4.4	.2	0	0	0
10	-5.8	-4	.1	0	0	0
11	-5.8	-4	1	0	0	0
12	-5.8	-4.2	2	0	0	1
13	-5.8	-4.8	4	0	0	2
14	-5.8	-5.6	6	0	0	5
15	-5.8	-6.6	-1	0	0	8
		-7.9	-1.5	0	0	-1.1
17	-5.8	-9.4	0	0	0	0
18	-5.8	-11.2	0	0	0	0
19	-5.8	-12.9	0	0	0	0
20	-5.7	-14.2	0	0	0	0

Journal of the Control of the Contr							
() Span Depth of fill Ring depth Position of backing	8700 mm 390 mm 570 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	1460 mm 100 mm 1 0 mm				
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3				
Phi for fill	30 deg	Masonry strength	4.4 N/mm^2	2			
Load Lane width	Triple Axle	e:22.5t:Right Lift-off at	21350				

Lane width 1929mm

Required ring depth 451 mm Geometric F.O.S 1.26

H Left 331 kN/m H Right 346 kN/m

V Left 359 kN/m V Right 176 kN/m

Comp. zone at hinge 2 84 mm Factor on pass. press. .3

Hinges 1 AT 1

2 AT 6

3 AT 14

4 AT 21

ional Press
ress

WS/	Atkins		Project ECL KSSESS NEWT CONTRACT Nº3 WELLINDITCH - CHECK Part of structure MULTI			
		Drawing ref	Calc by	Date	/ 26 / e L/00	
Ref		Output				
	WOTSE C	cus (T)	Louinge.	Cond case		

	·	
Axle	(T)	cham'age.
SA	11.5 T	12.45
DA	20 T	/3
TA	24 +	13.
TA	18 7	12.5
TA	22.5 7	13
ÞΑ	33 R	/3
3 A	33 R	12.5
DA	25 R	/3
s A	17-33 R	13
SA	10 R	13
54	3 R	14
DA	20 T	12
DA	20 T	12,5
TA	22.57	/3
TA	247	13
TA	187	12.5
DR	33 TR	13
JA	25 T R	13
PA	25TR	12.5
\$ 🛧	13 TR	13
SA	7.57R	/4

MULTI ANALYSIS TABULATED RESULTS

Loadcase: SA 11.57 al 12500 Charinge

Duaucasc.	311	11. 3	` ~~					·	
Left span		Pier .		Right	span	Offset	Load	σL	σR
H (kN)	V (kN)	Nr	Force	H (kN)	V (kN)	From L	(kN)	(KN/m²)	(KN/m²)
454	.5.		0	506	219	487	\$ 70	758	155
522	203	2	0	473	142	825	477	15	149
									······································
							,		
									
	Left H (kN)	Left span H(kN) V(kN)	Left span H (kN) V (kN) Nr	Left span Pier. H(kN) V(kN) Nr Force	Left span Pier Right H (kN) V (kN) Nr Force H (kN) 454 .51 1 0 \$a6	Left span Pier Right span H (kN) V (kN) Nr Force H (kN) V (kN) 454 .51 1 0 \$66 249	Left span Pier Right span Offset H (kN) V (kN) Nr Force H (kN) V (kN) From L 454 .51 1 0 506 239 487	LeftspanPierRightspanOffsetLoadH (kN)V (kN)NrForceH (kN)V (kN)From L(kN)454.5110506249487576	Left span Pier Right span Offset Load σL H (kN) V (kN) Nr Force H (kN) V (kN) From L (kN) (KN/m²) 45+ · 51 1 0 So6 2 ½9 4 ½7 5% 75%

BUTMENT REACTIONS

No Teisson exits : Satisfactory for 11.57 SA Load.

(Teisson is -ve. for or and or)

MULTI ANALYSIS TABULATED RESULTS

ZO.3 T LE FT AT 12 500 DA LIFT OF Loadcase: Load σL Offset σR Pier Right span Left span (KN/m²)(KN/m²)H(kN) V (kN) From L (kN)Force V (kN) Nr H(kN) 436 990 49 177 342 649 301 378 599 366 372 524 472 172 397 219

ABUTMENT REACTIONS

Test H= 301 kN V= 125 kN @ 1028 mm from springing Light H= 372 kN V= 129 kN @ 498 mm from springing

No Tension i. Satisfactory for 20.3 T D.A. Wading with lift off.

the first that the conference and the subject to be a self-interest of the subject that the self-interest of the subject to th

MULTI ANALYSIS TABULATED RESULTS

span	Pier		Right span		Offset	Load	σL σ	σR
V (kN)	Nr	Force	H (kN)	V (kN)	From L	(kN)	(KN/m ²)	(KN/m ²)
155	1	9	366	196	585	483	459	313
364	2_	O	294	170	765	673	176	902
								-
	V (kN)	V (kN) Nr	V (kN) Nr Force	V (kN) Nr Force H (kN) 155 1 9 366	V(kN) Nr Force H(kN) V(kN)	V(kN) Nr Force H(kN) V(kN) From L 155 1 0 366 196 585	V(kN) Nr Force H(kN) V(kN) From L (kN) 155 1 0 366 196 585 482	V(kN) Nr Force H(kN) V(kN) From L (kN) (KN/m²) 155 1 0 366 196 585 482 459

CABUTMENT REACTIONS

Teft H= 335 kN V= 1+6 kN@ 791 mm from springing

Right H= 294 kN V= 113 kN@ 288 mm from springing

Aupostive

i. No Tansion i. Satisfactory for T.A. 22.57 with

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. WFM/833 ECC Bridge No. 1662

Structure: Wellinditch Bridge

Date: May-2000

APPENDIX C

APPROVAL IN PRINCIPLE

AND

INSPECTION FOR ASSESSMENT