CONTENTS PAGE

BRIDGE REFERENCE

EDE25

REPORT 1

REPORT 2

REPORT 3

REPORT 4

OTHER DOCUMENTS

BRITISH RAIL PROPERTY BOARD

BRIDGE ASSESSMENT TO BD21/97

B6259 - GREAT MUSGRAVE RAILWAY BRIDGE NO 25

CUMBRIA COUNTY COUNCIL - CONSTRUCTION SERVICES

BD 21/97 LOAD ASSESSMENT REPORT

FOR:

B6259

GREAT MUSGRAVE RAILWAY BRIDGE

PAGE No. ...1..... OF ..38... PAGES

REPORT COVER SHEET AND INDEX

***	INDEX			PAGE No.
	RESULTS SUMMARY S	HEET		2
	ASSESSMENT AND CHI	ECK CERTIFICATES		3-4
	APPROVAL IN PRINCIP	LE FORM TA1 (if requ	uired)	5- 8
	INSPECTION AND SUR			9
	ASSESSMENT CALCUL	ATIONS (or storage re	eference)	20
	PHOTOGRAPHS	, ,	•	26
		ing location plan, previo		38
_	CLIENT: BRITISH RAI	L PROPERTY BOARI	D	
	SCHEME No.: As Quali	ty Plan		
-	ASSESSMENT LIST AP	PENDIX No.: 24		DATED: 27/08/96
-	FOR QUALITY PLAN I		covered by Scheme Specia	ic Instruction)
700	REPORT TITLE:	AS HEADER		
	STATUS	DATE	AUTHOR	APPROVED
-	ICCLIED FOR LICE	Nov. 98		
,	ISSUED FOR USE		(Assessor)	(Team Leader)
				CATEGORY B
****	SIGNED: (Assessor)		Date	13 Nov. 98.
	APPROVED:(Team Lead	ler)	Date	14 Nov.98.
~	DATE SUBMITTED TO	CLIENT:	9 Nov. 98.	
	DISTRIBUTION LIST: ONE COPY PRODUCED ONE COPY RETAINED			3RPB .
	RECORD COPY RET	TAINED BY E+E.		
_	H/QAFORMS/BRASS/CCC/REPORT Status: Issued for Use	T/Struct 3 (0) form		Form Rev 1 (3/98)

PAGE No. ..2....

FOR:

B6259

GREAT MUSGRAVE RAILWAY BRIDGE

ds stated in the Design Basis Statement/Approval

The assessment was carried out in accordance with the standards stated in the Design Basis Statement/Approval in Principle Form TA1 countersigned by the Client on10 Nov 97......(delete if non-applicable).

1. The results of the assessment are as follows:

Great Musgrave No 25 Railway Bridge has been assessed in accordance with BA16/97 and BD21/97 using the modified MEXE method.

The arch barrel has been found to be unsatisfactory for Full Construction and Use loading. A 17 Tonne weight restriction should be applied to the structure.

The allowable axle loads are: Max single axle load = 11.5T per axle

Max double axle load = 7.5T per axle

Max triple axle load = 6.5T per axle

The foundations, abutments, wingwalls, spandrels and parapets have been assessed qualitatively (visual inspection) in accordance with clause 8 of BD21/97 and are considered adequate to carry the present imposed loading.

The parapets do not comply with the requirements of BD52/93 in terms of impact resistance.

2. Recommendations to increase the assessed capacity are as follows:

Repoint arch barrel

B6259 – GREAT MUSGRA	VE RAILWAY BRIDGE	PAGE. 3 OF 38.
antin		
3000 .		
MANA.		
3 744		
Ministra .	ASSESSMENT TO BD 21/97 INSPECTION AND SURVEY INFORMATION	,
No.		
and.		
_		
_		
Austr		
may.		
Time.		

Explanatory Notes on Completion of Inspection Report Form

Severity:

- 1 No significant defect.
- 2. Minor defects of a non-urgent nature.
- 3 Defects which should be included for attention within the next annual maintenance programme.
- 4 Severe defects where urgent Client action is recommended for the protection of persons and property.

Extent:

- A No significant defect.
- B. Slight, not more than 5% of length or area affected.
- C Moderate, 5% 20% affected.
- D Extensive, more than 20% affected.

Boxes for all applicable elements are to be completed, i.e. Extent A Severity 1 represents a 'nil' report.

Boxes for non-applicable elements are to be dashed to indicate consideration.

A typical form is shown overleaf.

The comments section is to be used to list remedial works and estimated costs. The rear of the form or an extra sheet may be used for continuations.

DEPARTMENT OF HIGHWAYS AND ENGINEERING

			SPANS	INO 8.45m (SKEL)
DATE OF I	NSPECTION 4/9/	70		INSPECTED BY
ITEM NO	ITEM DESCRIPTION	EXTENT	SEVERITY	COMMENTS/DESCRIPTION OF CONDITION
1	FOUNDATIONS	A	1	HOT INSPECTED BUT NO SIGNS OF MOVEMBUT
2	INVERT OR APRONS	A	1	
3	FENDERS			
4	PIERS/COLUMNS			
5	ABUTMENTS	A	1	
6	WING WALLS	В	2	REPOINT OPEN/CRACKED SOUTS MONITOR CRACKING TO SE WINGWALL
7	RETAINING WALLS OR REVETMENTS			
8	APPROACH EMBANKMENTS			÷
9	BEARINGS			
10	MAIN BEAMS			
11	TRANSVERSE BEAMS			
12	DIAPHRAGMS OR BRACING			
13	CONCRETE SLAB			
14	METAL DECK PLATES			
15	JACK ARCHES			
16	ARCH RING/ARMCO	В	2	REPAIR LOCAL SPALLED ELEMENTS; REPUNT OPEN SOUTS
17	SPANDRELS	D	3	REPOINT OPEN/CRACKED SOINTS; MONITOR NORTH SPANDRELS FOR FURTHER MOVEMENT
18	TIE RODS			The state of the s
19	DRAINAGE SYSTEM			
20	WATERPROOFING			
21	SURFACING	A	1	
22	SERVICE DUCTS			
23	EXPANSION JOINTS			
24	PARAPETS	D	2	REPOINT OPEN SOINTS TO NORTH PARAPET REBED DISPLACED MASONRY TO N.E. END
25	ACCESS GANTRIES OR WALKWAYS			The state of the s
26	MACHINERY		,	
REME	DIAL WORK RECOMMEN	DED AT P	REVIOUS INS	SPECTION SATISFACTORILY COMPLETED YES/NO
00111515	C IE ANGUER 10 ()			

OF .38... PAGES REV No. 0

PAGE No. .12....

DATE: Sept 1996

FOR B6259 (ROUTE)

GREAT MUSGRAVE RAILWAY BRIDGE (STRUCTURE)

INSPECTION AND SURVEY INFORMATION

ACTION

GENERAL

- Great Musgrave Railway No 25 consists of a 8.45m single skew span sandstone masonry arch structure carrying the B6259 over a disused railway line, 0.5km west of the village of Great Musgrave.
- The structure can be located at Ordnance Survey Reference NY 765 136.
- Inspection of the structure was carried out on 4 September 1996 using a 7.5m aluminium extension ladder for access.
 - The weather was warm, dry and sunny on the day of the inspection.

FOUNDATIONS (Item No. 1)

Inspection of the bridge did not reveal any undue signs of movement/settlement which would indicate any inadequacies in the foundations. It can therefore be assumed that the foundations are sound and that they are adequate to support the present imposed loading.

INVERT/TRACK BED (Item No. 2)

The original railway line and ballast has been recovered and the land returned to agricultural use.

ABUTMENTS (Item No. 5)

- Both east and west abutments were constructed from large rectangular, course, rockfaced sandstone masonry blocks following a good uniform alignment (Photo No 5 & 6). The mortar joints to the abutments were generally intact and filled with reasonable quality. Inspection of the abutments did not reveal any defects which would reduce their ability to carry the current imposed loading.
- A longstanding vertical crack 0.3mm wide was present through the full depth of the NW springing bedstone, visible on the north face.

Monitor

ARCH BARREL (Item No. 16)

Barrel constructed from coursed, dressed sandstone masonry (Fb = 0.95) with 6mm -10mm wide mortar joints (Fw = 0.9). The faces of 4No barrel stones had spalled away to a depth of 30mm on the second and third courses above the west springing, 2No 500mm from the north edge and 2No 500mm from the south edge (Photo No 9). The face of 1 No number block has spalled away to a depth of 75mm over a 300 x 450mm area (Photo No 8), 2 No courses west of the crown 1.5m from the south edge. The mortar to the joints to this spalled barrel stone was missing for the full arch barrel depth. At the time of inspection the arch barrel was dry, however leachate deposits were present for a distance of 2m in from each edge indicating that water has or still is penetrating through the arch barrel construction. Random open joints were evident to 10% of the barrel soffit in the crown area.

Monitor

Local repair

LD/BRASS/BRPB/01F Status: Issued for Use

Page 1 of 1 Rev 0 (8/96)

RIDGE

page no. <u>13</u> of <u>.38</u>.. pages

REV No. 0

ACTION

ioints

Repoint open

DATE: Sept 1996

FOR B6259 (ROUTE)

GREAT MUSGRAVE RAILWAY BRIDGE (STRUCTURE)

INSPECTION AND SURVEY INFORMATION (CONT.)

The length of open joints varied between 150 to 300mm to an average depth of 300mm.

(Fd = 0.8, Fmo = 0.9)

The voussiors to the north elevation were reasonably well pointed and followed a good alignment with no visible deterioration of the individual masonry elements.

The south voussiors also maintained a satisfactory profile, with no visible deterioration of the individual masonry elements. The voussior soffit joint was open for up to 60mm in the length at the bottom corner for 3No voussiors at the SW quarter point, the rest of the joints to the voussiors were reasonably well pointed.

Repoint open joints

SPANDREL WALLS (Item No. 17)

Spandrels constructed from coursed rockfaced sandstone masonry. The alignment of the south spandrel was satisfactory with no sign of any significant lateral displacement, bulging or movement. Random cracking was evident to a number of mortar joints over the south spandrel area. Cracking of the mortar pointing to the extrados joint has occurred for the full length of the joint with the mortar missing over the 8th and 9th voussoir above the SW springing (Photo No 10).

cracked/open joints Repoint

Repoint

50% of the pointing to the north spandrel extrados joint was missing, where pointing was present cracking was evident together with evidence of 2-3mm spandrel displacement (possibly longstanding). 30% of the mortar joints to the north spandrel were cracked or the pointing was spalling away from the masonry. Apart from the lateral displacement the alignment of the spandrel wall was satisfactory with no significant bulging or deformation evident.

cracked/open joints
Monitor for further movement

Both stringcourses followed a satisfactory alignment with no significant deformation, the majority of the mortar pointing to the perp joints has been washed out leaving the joints open. Minor vegetation was evident along the stringcourse to the north elevation (Photo No 13).

Repoint open joints remove vegetation

WING WALLS (Item No. 6)

Wing walls constructed from coursed, rockfaced sandstone masonry.

The SE wingwall followed a good alignment with no significant deformation rotation or movement. A small number of the mortar joints were cracked but overall the pointing to the wall was satisfactory. A longstanding predominately vertical crack 1-2mm wide ran the full height of the wall, in the mortar joints, 4m east of the east abutment (Photo No 14).

Monitor

The SW and NE wingwalls were reasonably well pointed with only the occasional cracked joint, both walls following a satisfactory alignment.

LD/BRASS/BRPB/01F Status: Issued for Use

Page 1 of 1 Rev 0 (8/96)

FOR B6259 (ROUTE)

GREAT MUSGRAVE RAILWAY BRIDGE (STRUCTURE)

PAGE No. .!4.... OF ..38... PAGES REV No. 0

DATE: Sept 1996

INSPECTION AND SURVEY INFORMATION (CONT.)

The mortar was cracked or missing to 10% of the joints to the NW wingwall. 2 No masonry blocks were badly weathered with the faces spalled away adjacent to the spandrel, 1No 6 course above ground level for the full course height, 450mm in length for a depth of 100mm and 1No 3 course above ground level for the full course height, 300mm in length for a depth of 75mm (Photo No 15).

ACTION

Repoint cracked/open joints Local masonry repair

PARAPETS (Item No. 24)

The parapets are constructed of coursed dressed sandstone masonry with flat top sandstone copings. Accidental damage has resulted in 2No masonry blocks being displaced by up to 100mm at the east end of the north parapet, 2 courses above road level (Photo No 17). The pointing to the north parapet is at the end of its life with the majority of the joints open or cracked (Photo No 18) 30% of the mortar joints to the north parapet requiring repointing (Photo No 19). Apart from the minor accidental damage on the north parapet both parapets followed a satisfactory alignment.

Reset masonry blocks Repoint open/cracked joints

CARRIAGEWAY (Item No. 21)

The bitmac surfacing over the structure was found to be in a satisfactory condition, however very minor rutting was evident to the surfacing.

Inspection of the surfacing did not reveal any significant settlements/rutting therefore the unknown barrel fill is assumed to be well compacted (Ff = 0.7).

FOR 86259 (ROUTE)

GREAT MUSGRAVE RLY Nº 25 (STRUCTURE) PAGE No. 15 OF 38 PAGES REV No. DATE: No. 98

INSPECTION AND SURVEY INFORMATION

CUMBRIA COUNTY COUNCIL - CONSTRUCTION SERVICES

BD 21/93 LOAD ASSESSMENT REPORT

86259 (ROUTE) FOR

GREAT MUSCRAUE RLY 11°25 (STRUCTURE)

PAGE No. 16 OF .38... PAGES REV No. ..Q...... DATE: Nov. 98...

INSPECTION AND SURVEY INFORMATION

* INTERPOLATED LEVEL

SKEW CROSS SECTION AT CROWN 1:50

FOR 36259

GREAT MUSCRAVE RLY HOZS

E

INSPECTION AND SURVEY INFORMATION

(NOT TO SCALE)

SOUTH ELEVATION

$$r_c = 97.631 - 95.331 = 2.300 m$$

$$\mathbf{r}_{q} = \left\{ (97.364 - 95.338) + (97.309 - 95.324) \right\} \frac{1}{2} = \frac{2.001 \text{ m}}{2}$$

$$\mathbf{h} = (98.568 - 97.630) - 0300$$

* DENOTES INTERIOLATED

= 0.638m

99 881 Top of Parapet

W

98-568 (Channel) 98-569 (Crown)

* INTERPOLATED LEVEL

FOR B6259 GREAT MUSCRAUE RLY Nº 25

PAGE No. 18... OF .38.. PAGES REV No. DATE: Nov. 26.

W

INSPECTION AND SURVEY INFORMATION

(NOT TO SCALE)

NORTH ELEVATION

$$- r_c = 97.650 - 95.351 = 2.299 m$$

$$\mathbf{r}_{q} = \left\{ (97.198 - 95.344) + (97.294 - 95.359) \right\} \stackrel{!}{=} = \frac{1.895}{1.895}$$

$$- h = (98.569 - 97.649) - 0.3$$

* DENOTES INTERPOLATED LEVEL

99.663 Top of Parapet

- E 98.569 (Channel) 38.567 (Crown)

	B6259 – GREAT MUSGRAVE RAILWAY BRIDGE	PAGE 20 OF 38

-		
Allen Tille		

SAN THE		
,a		
- Personal		
-	ASSESSMENT TO BD 21/97 CALCULATIONS	
;enti		

40,000,		
Name of Street		
_		

BD 21/97 LOAD ASSESSMENT DESIGN BASIS STATEMENT AND CALCULATIONS FIRST SHEET

Sheet No. 2.1... of ..38.. sheets Rev No.

FOR:

B6259

GREAT MUSGRAVE RAILWAY BRIDGE

Date Prepared:
607 98
Date Checked:

Nov 1998

Prepared by:

2. NAME OF CHECKER	
1. NAME OF ASSESSOR	

3. CHECK CATEGORY (MS-04/03)

CI/I

- 4. PURPOSE OF CALCULATIONS
 - BD 21/97 ASSESSMENT FOR:-
- a) C & U VEHICULAR LOADING
- b) PROPOSED EC 40T LOADING
- ASSESSMENT OF TYPE HB LOADING CAPACITY FOR A SINGLE VEHICLE ON THE BRIDGE ONLY (WITH THE EXCEPTION OF MASONRY ARCH BRIDGES AND ALL U ROAD BRIDGES)
 - 5. STANDARDS, CODES OF PRACTICE AND REFERENCE DOCUMENTS USED

FOR ASSESSMENT (Erase as appropriate)

- SEE APPENDIX DBSC1 OVERLEAF
 SEE APPROVAL IN PRINCIPLE FORM TA1
- 6. SOURCES OF INPUT DATA

SITE SURVEY AND INSPECTION DATA

-RECORD DRAWINGS-

7. <u>DESCRIPTION OF METHODS OF ANALYSIS AND DETAILS OF COMPUTER PROGRAMS USED</u>

CASIO CALCULATOR - PROGRAM 'MEXE v1.5'

8. REVIEW AND VERIFICATION OF ASSESSMENT BY TEAM LEADER

The assessment output meets above requirements

Signed					Date	14	Nov	. 98
Name								
Comments	 (Satisf	actory	••••••••••••••••••••••••••••••••••••••				

CUMBRIA COUNTY COUNCIL - CONSTRUCTION SERVICES LOAD ASSESSMENT PROGRAMME FOR STRUCTURES DESIGN BASIS STATEMENT - APPENDIX DBSC 1

STANDARD CODE OF PRACTICE AND REFERENCE DOCUMENTS USED FOR ASSESSMENT

APP.DBSC 1
PAGE.22..of.38...

REV No. 6

DATE: Nov 98

(Note:	Erase	references.	not applicable)
1		<i>J</i>	1.4

SAMP		(Note.	Erase rejerences not applicable)	
	A .	MANDATO	ORY DOCUMENTS	Dated
		BD 16/82	Design of Composite Bridges - Use of BS 5400 Pt 5:1979	Nov 1982
			Amendment No. 1	Dec 1987
		BD 24/92	The Design of Concrete Bridges - Use of BS 5400 : Pt 4: 1990	Nov 1992
		BD 37/88	Loads for Highway Bridges	Aug 1989
		BD 2/89	Technical Approval of Highway Structures on Motorways and	
			Other Trunk Roads. Part 1 - General Procedures	Oct-1989
		BS 5400	Steel, Concrete and Composite Bridges	
			Part 3: 1982 - CP for Design of Steel Bridges (see BD-13/90)	1982
			Part 4: 1990 - CP for Design of Concrete Bridges (see BD 24/92)	1990
570.00			Part 5: 1979 - CP for Design of Composite Bridges (see BD16/82)	1979
		BD 13/90	The Design of Steel Bridges - Use of BS 5400: Part 3: 1982	Feb 1991
		BD-34/90	Technical Requirements for the Assessment and Strengthening	
;			Programme for Highway Structures - Stage 1 - Older, Short Span	
			Bridges and Retaining Structures	Sept 1990
		BD 44/95	The Assessment of Concrete Highway Bridges and Structures	Jan 1995
****		BD 52/93	The Design of Highway Bridge Parapets	April 1993
		BD 48/93	The Assessment and Strengthening of Highway Bridge Supports	June 1993
		BD 21/97	The Assessment of Highways Bridges and Structures	Feb 1997
-			Amendment No. 1	Aug 19 9 7
		BD 63/94	The Inspection of Highway Structures	Oct 1994
******		BD 31/87	Buried Concrete Box Type Structures	Jan 1988
	_			
	В.		OTES AND OTHER REFERENCE DOCUMENTS	
-			references as appropriate)	4 111000
		BA 39/93	Assessment of Reinforced Concrete Half Joints	April 1993
		BA 32/89		0 . 1000
,			other Trunk Roads. Part 1 - General Procedures	Oct 1989
		BA 16/97	The Assessment of Highway Bridges and Structures	May 1997
		****	Amendment No. 1	Nov 1997
9/463		BA 55/94	j	3004
			Retaining Walls and Buried Structures	1994
			Amendment No. 1	Nov 1997
W			61/8 Assessment of Buried Concrete Box Structures - HA Letter	29 May 1997
		BA 63/94	The Inspection of Highway Structures	Oct 1994
		BA 44/96	The Use of BD 44/95 - The Assessment of Concrete Highway	37 4666
			Bridges and Structures	Nov 1996
		BS 8110	Structural Use of Concrete	
			Part 1: Code of Practice for Design and Construction	March 1997
		Bridge Insp	ection Guide (HMSO ISBN 0 11 550638 1)	1984

C. <u>LIST ANY DEPARTURES FROM STANDARDS</u>

	CONSULTANCY	Cumbria Cou CONSTRUCTIO Consultancy & De	ON SERVICES		Sheet No. 23 of 38 Sheets Rev. No. 0
-	+ 76	Scheme REF OF RAIL PROPERTY BOAK D	Scheme Ref.	Date Prepared SEPT 76	Prepared by
	DESIGN	Element / Item GREAT MUSCRAIT RLY NOZS	Joblog No. 2177	Date Checked Noシーラビ	Checked by
	Code Ref.	CALCULATIO	NS / WORK		Output / Remarks
1		MAGONRY ARCH TO BA HORTH ELEVATION - SOUTH WER		ACTURES SIMILLAR	EXCEPT
-		BARREL FACTOR (Fb)			
******		LARGE COURSED SAND. SATISFACTORY CONDITION	STOME Blocks	: IN	Fb = 0.95
		FILL FACTOR (Ff)		Ĵ	
		UNGNOWN WELL COMP			Ff = 0.70/
		JOINT WIOTH FACTOR (
****		JOINT WIDTHS GIGNERAL!		~~	Fw = 0.90
		MORTAR FACTOR (Fm			6 000
		LOOSE OR FRIABLIE N	NORT AR		Fmo = 0-90
, imm		DEPTH FACTOR (Fd)			
-		JOHTS WITH WPTO TO			Fd = 0.80
-		CONDITION FACTOR (0.05	
		WATER PENERIPOTUN	1 FRACIME	-0.05	
~		FOGE LUADING	Fc -	0.75	Fc = 0.75
arets	·		16 _		12 - 73
	·				
		•			
	L				

Stage Name	CUMBRIA COUNTY (ARCH ASSESSMENT DESIGN	Page No. 2	4			
CADA ASSESSMENT OF ARCHES IN ACCORDANCE WITH	B Ige No: Bridge Name:	of 38 Pages	of 38 Pages			
	- GCF-11			DATE BREBARED		
AND ADVICE NOTE BA 1697 BA 1	"IE ASSESSMENT OF HIGHWAY BRIDGES A				PREPARED BY	i
REFERENCES ARE TO BA 1697 UNLESS NOTED OTHERWISE) NOU. 98 NO						
SOUTH Sout		ED OTHERWISE)				•
SPAN (squareskew) L= 2.49	S UCTURAL DIMENSIONS					
NISE OF ARCH BARREL AT IAPOINT NISE OF ARCH BARREL NISE OF ARCH BARREL BARREL RATTOR (FIG. 13.11) NISE OF ARCH BARREL BARREL RATTOR (FIG. 13.12) NISE OF ARCH BARREL BARTOR (FIG. 13.13) NISE OF ARCH B		4	t =			(m)
EFFECTIVE DEPTH OF RILL AT CROWN he he do 3.365* 0.	RISE OF ARCH BA	RREL AT CROWN	_	2.294	2.300	` ' '
			•	1.895	2.001	, , ,
AVISIONAL ASSESSMENT (CI 3.10)			-	D-38577	0.3857	
PAL = 740 (4 h) ³ / ₁ L ¹³ but × 770T - iPAN - iPA	F DVISIONAL ASSESSMENT (CL 3 10)		d + h=	0.776	0-770	(m)
TOTAL CROWN THICKNESS (d+h) =	$PAL = 740 (d + h)^2/L^{1.3} but > 70T$					
PAL				27.37	27.50	_
1	, ,					(1)
1	S-N /RISE FACTOR (Fsr) (CI 3.11)					
Fig. 3.3 rc		= <u>3.68</u>	Fsr=	1.0	1.0	
Fp = 2.3 ((rc - rq)/rc) ²⁴ rc	(Fig 3.3)	= 3.66		·	, ,	-
Carterial Factor (Fm) (CI 3.13) Fix = 0.95 Co. 925	E DFILE FACTOR (Fp) (CI 3.12)		······			
Laterial Factor (Fm) (Cl 3.13) Barrel Factor (Fm) (Cl 3.13) Fb = 0.95	Fp = 2.3 [(rc - rq)/rc] ^{0.6}	= <u>0.824</u>	fp=	0-61	0676	
TABLE 3/1) Fix = \frac{O-7}{D-7} TABLE 3/2 Fix = \frac{O-7}{D-7} TABLE 3/3 Fix = \frac{O-7}{D-7} TABLE 3/3 Fix = \frac{O-9}{D-9} TABLE 3/3 TABLE 3/3 TABLE 3/3 Fix = \frac{O-9}{D-9} TABLE 3/3 TABLE	Treat Fr	= <u>0-67</u>				
TABLE 3/1) Fix = \frac{O-7}{D-7} TABLE 3/2 Fix = \frac{O-7}{D-7} TABLE 3/3 Fix = \frac{O-7}{D-7} TABLE 3/3 Fix = \frac{O-9}{D-9} TABLE 3/3 TABLE 3/3 TABLE 3/3 Fix = \frac{O-9}{D-9} TABLE 3/3 TABLE	Leterial Factor (Fm) (CI 3.13)	0.46		0.475		
MATERIAL FACTOR (Fm) = (Fb x d) + (Ff x h)	BARREL FACTOR (Fb) (TABLE 3/1	$P_0 = \frac{0.47}{0.7}$				
I			Fm =	0.825	0.825	
WIDTH FACTOR (Fw)	<u> </u>		141			
MORTAR FACTOR (Fm)	I NT FACTOR (FI) (CI 3.16)					
DEPTH FACTOR (Fd)	, ,) Fmo = 0-9			6/10	l I
Interpretation Factor Fa	DEPTH FACTOR (Fd) (TABLE 3/5) Fd = <u>0-9</u>		0.648	0.648	
ILTI SPAN FACTOR Interpretation In	JOINT FACTOR (Fj) = Fw x Fmo	x Fd Fj = 0-649				
Single Span or Massive Piers	CONDITION FACTOR (Fc.) (CI 3.17 To 3.23 I	nclusive)	Fc =	0.75	0.75	
-End span normally interMediate span normally MODIFIED AXLE LOAD (MAL) (CI 3.24) MAL = Msf x Fsr x Fp x Fm x Fj x Fc _N x PAL CENTRIFUGAL EFFECT (Fa) (CI 3.29) Is Centrifugal Effect considered applicable? XES/NO Radius (r) = Fa = MA MA AXLE FACTORS (Af) SINGLE AXLE = 1.54 1.53 I AXLE BOGIE = 2 AXLE BOGIE = 1.0 1.0 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 AAL = 4.0 7.50 I AXLE BOGIE = 0.89 0.69 I AAL = 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	I LTI SPAN FACTOR					
MODIFIED AXLE LOAD (MAL) (CI 3.24) MAL = Msf x Fsr x Fp x Fm x Fj x Fc _N x PAL MAL = 8.09 7.46 CENTRIFUGAL EFFECT (Fa) (CI 3.29) Is Centrifugal Effect considered applicable? XES/NO Radius (r) =			Msf = 1.0		1.0	
MODIFIED AXLE LOAD (MAL) (CI 3.24) MAL = Msf x Fsr x Fp x Fm x Fj x Fc _H x PAL MAL = Msf x Fsr x Fp x Fm x Fsr x Fp x Fm x Fsr x PAL MAL = Msf x Fsr x Fp x Fm x Fsr x Fp x Fm x Fsr x PAL MAL = Msf x Fsr x Fp x Fm x Fsr x Fsr x PAL MAL = Msf x Fsr x Fp x Fm x Fsr x Fsr x PAL MAL = Msf x Fsr x Fsr x Fsr x Fsr x Fsr x PAL MAL = Msf x Fsr x Fsr x Fsr x Fsr x Fsr x Fsr x PAL MAL = Msf x Fsr x	· •			1.0		
MAL = Msf x Fsr x Fp x Fm x Fj x Fc _H x PAL CENTRIFUGAL EFFECT (Fa) (CI 3.29) Is Centrifugal Effect considered applicable? XES/NO Radius (r) =	interfredate span normally		7.8			
CENTRIFUGAL EFFECT (Fa) (CI 3.29) Is Centrifugal Effect considered applicable?	MODIFIED AXLE LOAD (MAL) (CI 3.24)			0.00	201	
Is Centrifugal Effect considered applicable? XES/NO Radius (r) = Fa =	MAL = Msf x Fsr x Fp x Fm x Fj x Fc _H	x PAL	MAL =	6.09	1.46	
Is Centrifugal Effect considered applicable? XES/NO Radius (r) = Fa =	CENTRIFUGAL EFFECT (Fa) (CL 3 29)		······································			
Radius (r) =		rés/NO		.14]
Is Axle Lift-Off applicable? YES NO (Fig 3/5b) (Fig 3/5a)		Radius (r) =	Fa =	1 "17"	MITT	
Is Axle Lift-Off applicable? YES NO (Fig 3/5b) (Fig 3/5a)	LOWABLE AXLE LOAD (AAL) (CI 3.25)					
AXLE FACTORS (Af) SINGLE AXLE = 1.54 1.53 AAL = 1350 (T) 2 AXLE BOGIE = 1.0 1.0 AAL = 9.0 7.50 3 AXLE BOGIE = 0.89 0.69 AAL = 6.0 6.50 GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6) 7.50 GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6)		YES NO				
AXLE FACTORS (Af) SINGLE AXLE = 1.54 1.53 2 AXLE BOGIE = 1.0 1.0 3 AXLE BOGIE = 0.89 0.89 GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6) AAL = 13.50 1.50 7.5		(Fig 3/5b) (Fig 3/5a)				
2 AXLE BOGIE = 1.0 1.0 AAL = 9.0 7.50 GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6) AAL = 9.0 7.50 6.50 TO					l	
GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6) AAL = 6.0 6.50 ZST6V-W 17T6UW (T)	, , ,				•	m
GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6) 2576 V.W 177 GUW (T)	le control de la				7.50	
17.000	GROSS VEHICLE WEIGHT RESTRICTION (Table 3/6)				m
	I BRASS/MEXEZ AL' d' ONTAINIEN	EVAN TRIM ILIL			<u> </u>	

BRASS/MEXE2
us: Issued for Use

* 'd' OBTAINED FROM TRIAL HOLE ** 'H' LIMITED TO 'd'

Page 1 of 1 Rev 0 (11/97)

CONSULTANCY	Cumbria County Council Consultancy	& Design Work Sh	Construction Services eet	Sheet No. 25 of 38 Sheets Rev. No. 0
	SCHEME BRITISH RAIL PROPERTY BOAK	Scheme Ref.	Date Prepared APP L 98	
DESIGN	Element / Item CREAT MUSCRAVE REY DRIVE	LNOTS Joblog No.	Nou 98	
Code Ref.	,	JLATIONS / WORK		Output / Remarks
	STRENCHIENNIE OPTION	<u> </u>		
	OPTION I			
	7,7075			
	REPOINT UPEN SOINT	5		
	Z			
	: fm = 1.0 , fd	= 1:0		
	M.A L = 10.355	TONNY 5		
	: SINGLE AXLE	= 16 TONNES		
	Double Axie	= 10-5 TONNY 5 = 9.5 TONNY 5		
	IKIPLE ADLE	- 173 JONNES		
	: SMISTACIARY FOR	FULL 40 TONNE	ASSESSMENT L	ORANG

******	B6259 – GREAT MUSGRAVE RAILWA	AY BRIDGE	PAGE.	OF 38
,andage				

pules				
-				
_			, '	
		PHOTOGRAPHS		

#** *				
parali-				
Stavens				
ZBARK				
Sections				

rwei		•		
FESSION				
	H/QAFORMS/BRASS/CCC/REPORT/Struct 12 (0) form Status: Issued for Use		Form F	Rev 0 (1/98)

PHOTO NO. 1 – VIEW OVER LOOKING EAST

PHOTO NO. 2 – VIEW OVER LOOKING WEST

PHOTO NO. 3 – NORTH ELEVATION

PHOTO NO. 4 – SOUTH ELEVATION

PHOTO NO. 5 - WEST ELEVATION

PHOTO NO. 6 - EAST ABUTMENT

PHOTO NO. 7 - EAST SIDE OF ARCH BARREL

PHOTO NO. 8 – GENERAL VIEW OF BARREL SOFFIT AT CROWN

PHOTO NO. 9 – SPALLING TO BARREL STONES 2ND COURSE ABOVE WEST SPRINGING

PHOTO NO. 10 – OPEN MORTAR JOINT ALONG EXTRADOS JOINT ABOVE S.W QUARTER POINT

PHOTO NO. 11 – CRACKED/OPEN JOINT ALONG N.W EXTRADOS

PHOTO NO. 12 – GENERAL VIEW ALONG N.E SPANDREL

PHOTO NO. 14 – VERTICAL CRACK IN MORTAR JOINTS ON S.E WINGWALL

PHOTO NO. 15 - SPALLED MASONRY BLOCK IN N.W WINGWALL

PHOTO NO. 16 – GENERAL VIEW OF S.W WINGWALL

PHOTO NO. 17 – ACCIDENTAL DAMAGE AT EAST END OF NORTH PARAPET

PHOTO NO. 18 – TYPICAL AREA OF OPEN JONTS TO SOUTH FACE OF NORTH PARAPET

PHOTO NO. 19 – TYPICAL VIEW OF NORTH FACE TO SOUTH PARAPET

PAGE 38 OF 38	PAGE.	38	OF.	38
---------------	-------	----	-----	----

B6259 – GREAT MUSGRAVE RAILWAY BRIDGE

APPENDIX

H/QAFORMS/BRASS/CCC/REPORT/Struct 14 (0) form Status: Issued for Use

	B6259 – GREAT MUSGRAVE RAILWA	AY BRIDGE	
_			
_			
remien			

Mir-m			
		· ,	
		LOCATION DI ANI	
apparent .		LOCATION PLAN	
-			
4500			
			
,,,,,,,,			
\$0-41A			
-			
-			
-		•	

	H/QAFORMS/BRASS/CCC/REPORT/Struct 15 (0) form		
	Status laured for Llan		F D 0 /1/00

No.	2	. 5		
	1/4	mlE	>	Kms.
Sheet	1	of	1	
		L1 + 1/4 Code	Code	L + /4 MP

Condition of Part 1. Main Girders 2. Cross Girders 3. Rail Bearers Infilling to Girders/Troughs Arch Rings 7. Spandrels 8. Concrete Deck Slab 9. Rivets & Bolts 10. Welds 11. Suspension Bolts Bracing 13. Ballast Plates/Boards 14. Handrails 15. Parapets & Pilasters 16. Longitudinal Timbers 17. 18.

19. Bearings 20. Bedstones & Cills 200 STONES DRUMMY + SPALLED TO 1" PEEP ABOVE SPRINGER COURSE - SOUTHEND - DOWNLINE JOLD-STANDING

SIGNS OF SEEPAGE AT HAMNEH

15 7-6 x3-6 AREA OF MASONRY DESPLACED 1 TO3" NORTHEND PARAPET SupLine JOLD-STANDING

4-0 x 3-6 AREA OF MASONRY SLIGHTLY DISPLACED SOUTHEND PARAPET - UPLING [LD - STANDING]

24 Foundations - Superficial EXAMINATION ONLY

ofen Joint's to soffit + span OreLS.

Acti

21. Abutments 22. Wing Walls 23. Copings & Caps 24. Piers 25. Cols/Stanchions/Cylinders 26. Trestles 27. Crossheads 28. Ballast Walls 29. Foundations 30. Scour 31. Retaining Walls 32. Tie Bolts 33. Pointing 34. Waterproofing 35. Drainage 36. Gutters & Downpipes 37. Painting 38. Road Surfacing 39. Track Condition 40. Notice Plates 41. 42. 43. 44 45.

GOOD CONDITION IN GENERAL

(Examiner) Exami

Recommendations

48. Location of Rail Joints

46.

No Hetra

3- 5-77. (date)

FORM 'BA' (BRIDGES)

GC/TP0356

Appendix: 5 Issue: 1 Revision: A Date: FEB 93

CERTIFICATION FOR ASSESSMENT CHECK

STRUCTURE/LINE NAME GREAT MUSGRAVE RLY CATEGORY OF CHECK

ELRISTRUCTURE NO. . EDE 25

I certify that reasonable professional skill and care have been used in the assessment of the above structure with a view to securing that:

- (2) It has been checked for compliance with the following principal British Standards, Codes of Practice, BR Technical notes and Assessment standards.

BD 21/97 BD 63/94 BA 16/97 BA 63/94 BRIDGE INSP. GIUDE (1984). List any departures from the above, and additional methods or criteria adopted, with reference and justification for their acceptance (commenting on the results if appropriate).

CATEGORY 1

(ASSESSOR) 19/4/98 (DATE)

(ASSESSMENT CHECKER) 19/11/98 (DATE

PARTNER OF THE FIRM OF CONSULTING ENGINEERS TO WHOM ASSESSOR/ CHECKER IS RESPONSIBLE 19 Nov 98 (DATE)

CATEGORY 2 AND 3 (NOTE: CATEGORY 1 CHECK MUST ALSO BE SIGNED)

(a) ASSESSMENT

NAME

SIGNATURE

(ASSESSOR)

(DATE)

BRB SECTION ENGINEER OR THE PARTNER IN FIRM OF CONSULTING ENGINEERS TO WHOM ASSESSOR IS RESPONSIBLE (DATE)

(b) CHECK

NAME

SIGNATURE

(ASSESSMENT CHECKER)

(DATE)

BRB SECTION ENGINEER OR THE PARTNER IN FIRM OF CONSULTING ENGINEERS TO WHOM CHECKER IS RESPONSIBLE (DATE)

THE CERTIFICATE IS ACCEPTED BY

FORM 'BAA' (BRIDGES)

GC/TP0356

Appendix: 6 Issue: 1 Revision: A

CERTIFICATION FOR ASSESSMENT CHECK

Date: FEB 93

NOTIFICATION OF ASSESSMENT CHECK
STRUCTURE NAME/ROAD NO. GREAT MUSGRAVE RLY. Nº 25 86259
LINE NAME
ELR CODE/STRUCTURE NO. EDE 25
The above bridge has been assessed and checked in accordance with Standards which are listed on the appended Form SA. A summary of the results of the assessment in terms of capacity and restrictions is as follows: ARCH RING UNSATISFACTORY FOR FULL C+U INCL. 40 VE MAX. SINGLE AXLE LOAD 11.51 MAX. DOUBLE AXLE LOAD 7.51 PER AXLE MAX. TRIPLE AXLE LOAD 6.51 PER AXLE
Critical member/s: ARCH RING
RECOMMENDED LOADING RESTRICTIONS
DESCRIPTION OF STRUCTURAL DEFICIENCIES AND RECOMMENDED STRENGTHENING
SEE REPORT FOR DETAILS
Name: Signed: Structural Assessment Engineer
Name: Signed: Civil Engineer

₹ British Railways Board

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4
Issue: 1

Revision: A Date: FEB 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

STRUCTURE/LINE NAME GREAT MUSGRAVE RLY Nº 25

ELR/STRUCTURE NO. EDE 25

BRIEF DESCRIPTION OF EXISTING BRIDGE:

- (a) Span Arrangement
 SINGLE SPAN (APPROX 8.420)
- (b) Superstructure Type

 MASONRY ARCH (APPROX SKEW 13°)
- (c) Substructure Type

 MASS MASONRY PROTMONTS.
- (d) Details of any Special Features

ASSESSMENT CRITERIA

- (a) Loadings and Speed
- (b) Codes to be used

 BD 21/97 BD 63/94 BA16/97 BA63/94 BRIDGE INSPECTION

 (c) Proposed Method of Structural Analysis

 GVIDE (1984)
- Modified MELE METHOD.

(d) Details of any Special Requirements

NONIE.

STRUCTURAL ASSESSMENT ENGINEER'S COMMENTS

SEE APPENDIX A ATTACHED.

Group Standard

FORM 'AA' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: FEB 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

CIVIL ENGINEER'S COMMENTS

BRB WORKS GROUP COMMENTS IF APPL	ICABLE
PROPOSED CATEGORY FOR INDEPENDENT	T CHECK:
SUPERSTRUCTURECAT!	• • • • • • • • • • • • • • • • • • • •
SUBSTRUCTURE . VISUAL FOR CURP	ENT LOADING.
NAME OF CHECKER SUGGESTED IF CAT 2	OR3
CATEGORY 1	
THE ABOVE ASSESSMENT, WITH AMENDME	INTS SHOWN, IS APPROVED IN PRINCIPLE:
_	SIGNED
	TITLE SENIOR CIVIL ENGINEER
	DATE 10/11/97
CATEGORY 2 AND 3	
THE ABOVE ASSESSMENT, WITH AMENDME	NTS SHOWN, IS APPROVED IN PRINCIPLE:
	SIGNED
	TITLE
	DATE
	SIGNED
	TITLE
	DATE

FORM 'AA/1' (BRIDGES)

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: FEB 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ADDITIONAL INFORMATION REQUIRED FOR BRB OWNED PUBLIC ROAD OVERBRIDGES
ASSESSED AS PART OF BRIDGEGUARD III
STRUCTURE/LINE NAME GREAT MUSGRAVE RLY Nº 25
ELR/STRUCTURE NO. EDE 25.
SCOPE OF ASSESSMENT
ARCH RING. INSPECTION FOR CURRENT LOADING AND MODIFIED METER FOR CALCULATION CAPACITY.
REMAINDER OF SPRUTURE. INSPECTION FOR CURRENT LARDING.
ASSESSMENT CRITERIA
a) Standards and Codes of Practice to be used in assessment BD 21/97 BD 63/94 BA 16/97 BA 63/94 BRIDGE INSPECTION
b) Proposed method of structural analysis
MODIFIED MESE METHOD.
c) Planned Highway works/modifications at this site
TRIAL HOLES MAY BE REQUIRED.
d) Road designation/class and whether classed as a heavy load route
B 6259 NOT A HEAVY LOAD POUTE.
e) Any other requirement
No;un≘
The above is agreed subject to the amendments and comments shown below.
*SIGNED
TITLE STRUCTURES MUNICION
DATE 5-11-97
*A team leader or chief officer employed by an Agent Authority may sign "for and on behalf of" . Detected of Ecology & Ecology & Where authorised to do so.
perion of the transfer to do so.

-0.1

BRPB ASSESSMENTS

APPENDIX A

The use of modified MEXE method for assessment of single span masonry arch bridges with angle of skew 0° up to 20°.

1 FACTORS

BARREL FACTOR Fb as table 3/1 except that:-

Large coursed sandstone - Good quality workmanship

1.2

Uncoursed masonry (sandstone, limestone, slate) and non-engineering brickwork.

1.0

FILL FACTOR Ff as table 3/2. If no settlement or tracking of surfacing.

0.7

JOINT FACTOR Fj

Fw, Fmo, Fd as tables 3/3, 3/4, 3/5 respectively.

CONDITION FACTOR Fc

COMBINION TIME TO THE

BASIC FACTOR TAKEN AS 0.9

deduct if verge less than approx 0.75m thus allowing wheel load near edge.

Further deductions where appropriate (eg flaking or exfoliating masonry, isolated area of open joints).

2 DIMENSIONS

SPAN. Use skew span for L.

BARREL AND DEPTH OF COVER. In the absence of definite information from BR regarding 'd' the barrel thickness a figure of 2/3 of the depth of the edge voussoirs is taken, and the depth of fill limited to a maximum of the voussoir depth. If the structure passes the 40t assessment, no further investigation is deemed necessary. If fails (but would pass with d = voussoir thickness) then trial holes would be made over the crown of the arch to determine the actual barrel thickness.

3 CALCULATIONS

The the modified MEXE calculation is mounted on CASIO FX-730P personal computers which are monitored under the County Council's quality assurance scheme.

ARCH OVE	RBRIDG	E ASSESSMENT		7/		
	EDE	25 BEA CHECK.	E.L.R. BRDGE N		E NO	
Reference BA 16/84	e Page	BASED ON DEPARTMENT OF TRANSPORT; STANDARD BD 21/84 & ADVICE NOTE B	DEPARTMENTAL A 16/84	ti	CAPACITY & FACTORS	
		DIMENSIONS (m) N S	N S			
5.4 Fig 5.1	İ	Span L (m) 21.12 27.62 Ring thic		•		
Fig J.1	18	Rise (crown) re 7.547.54 Fill Dept		۱. ۱	S	
		Rise (quarter) ra 6.35 6.6 Crown (h	+ d) 3.01 3.07	N	ა 	
5.5	18	PROVISIONAL AXLE LOADING, PAL			40t	
Fig 5.2	20	$PAL = 740 \times (d + h)^2$ for 1.5m < L1.3 & 0.25m <	L < 18m (h+d) < 1.8m	FAL =		
= 6.1	20	SPAN / RISE FACTOR FAR L = 27.72		1.0	1.0	
		$r_{e} = 7.54 = 5.01$		Fan =		
5.6.2		PROFILE FACTOR F. Norm = 2.3(1- Sout - 2.3(1-6.6) \0.6 For ra/re <= 0	/	0.76	0.0	
Fig 5.4	21	$\subseteq_q = $ \longrightarrow $1.54/$ For $r_1/r_2 > 0$.	75	0.76 F _p =	0.66	
5.6.3	21	MATERIAL FACTOR F. (F. = (F. × d		Р —		
Table 5.1 Table 5.2		Barrel Factor $F_b = 0.95$	h + d) }	0.80	080	
5.6.3	21	$F_{m} = \frac{(F_{b} \times d) + (F_{f} \times h)}{(F_{b} \times d) + (F_{f} \times h)} = \frac{(0.95 \times 1.26) + (0.0) \times 1.81}{(0.95 \times 1.26) + (0.0) \times 1.81}$				
5.6.4	23	Norm = (0.95 * 1.26) + (0.7 × 1.75) (1.26 South 1.26 + 1.81) JOINT FACTOR F; (F; +1.75) × Fme × Fa)				
Table 5.3						
T-ble 5.4		Width Factor F. = 0.64 Mortar Factor F. =			0.648	
1.6.4	23	Depth Factor F = × F				
5.7	25-7	CONDITION FACTOR F_		F <u>0.75</u>	c.)5	
5.8	27	MODIFIED AXLE LOAD MAL MAL = PAL × Fsr × Fp × Fm × Fj × F	. !!	11.62 MAL =_	10.26 t	
5.8	28	CONVERSION OF MODIFIED AXLE LOAD T	O SINGLE			
	-	Axle				
Fig 5.5	29	Axle Type A _f	, <u>-</u> ,, .	_DADING ON SPAN		
		Single Axle	t		-	
	-	Double Axle Without Lift Off	<u>t</u>			
	 	Double Axle With Lift Off	t			
CALCULATED		Triple Axle 2.6m Spacing	t			
DALCULATED		CHECKED	SHEET	OF		

BRIDGE & STRUCTURE EXAMINATION REPORT ASSESSMENT GROUP LEEDS/JARVIS Facilities (continuation sheet) Line: EDEN VALLEY Particulars of Bridge/Structure: Sins, between: STONE ARCH, STONE ABUTMENTS, WINGS, SPANDRELS and AND PARAPETS O.S. Grid Ref.: NY 765 136 of 17 Sheet Remarks (Refer to parts by name) 26.7m 26.4m 5.3m 1..5m Skew Parapet Height East 1.230m Parapet Height West 1.280m Span 8.2m Abutment Length 6.300m Arch Heigh 4.4m Width of Parapets 470mm

ASSESSMENT GROUP
LEEDS/JARVIS Facilities

Line: EDEN VALLEY
State between:
and
O.S. Grid Ref.: NY 765 136

BRIDGE & STRUCTURE EXAMINATION REPORT
(continuation sheet)

Particulars of Bridge/Structure:
STONE ARCH,STONE ABUTMENTS, WINGS, SPANDRELS
AND PARAPETS

Sheet 3 of 17

Remarks (Refer to parts by name)

BRPB YORK

Stone Arch

Located 2.5m in from west side voussoir face - spalled area to north crown 400mm * 400mm, 45mm deep.

See photo 1.

Isolated areas of spalling throughout soffit up to 50mm deep above springer courses. See photo 2 and 3. Loss of mortar in isolated areas 10mm wide, up to 30mm deep. Water percolation and leaching various to soffit. See photo 4.

Isolated drummy areas.

Stone Spandrels

North East - 2/3m² deep open joint, 20mm wide up to 30mm deep. Sep. fracture over voussoir stones 2.8m long, bulging 10mm. See photo 5.

South East - Sep. fracture over voussoir stones 1.8m long, bulging 5mm. See photo 6.

South West - Sep. fracture over voussoir stones 2.1m long, open 2mm. See photo 7.

North West - Sep. fracture over voussoir stones 1.4m long, open 3mm. See photo 8.

Stone Abutments

North and south abutments - isolated drummy areas. See photo 9 and 10.

Wing Walls Box

North East - In mitre area 800mm above embankment - spalled area 330mm high, 200mm wide, 80mm deep. See photo 11.

1.650m above ground level - spalled to quoin 270mm high, 420mm long, 180mm deep. See photo 12.

0.5m² deep open joint to wing mitre 20mm wide, 40mm deep.

South East - Located 3.2m back from mitre, 900mm above embankment - spalled area 800mm long, 300mm high, 200mm deep. See photo 13.

Stone Parapets

East and west inner faces have been pointed.

Outer faces - deep open joints in various area 20mm wide up to 40mm deep.

East parapet south end - vehicle impact 2.250m long, 360mm high, displaced outward 60mm, has been pointed. See photo 14.

East parapet, located 3.1m from south end - spalling to bottom course 400mm long, 360mm high, 60mm deep. See photo 15.

West side parapet south end - pilaster cap displaced inwards 20mm at south end.

Waterproofing

Not examined due to no access. Visible evidence of failure with water percolation and leaching through stone arch soffit.

Foundations

Not examined due to no access. No visible evidence of failure.

Bridge Numbers

None fitted to this structure.

BRIDGE & STRUCTURE EXAMINATION REPORT ASSESSMENT GROUP LEEDS/JARVIS Facilities (continuation sheet) Line: EDEN VALLEY Particulars of Bridge/Structure Sins between) STONE ARCHISTONE ABUTMENTS, WINGS, SPANDRELS and O.S. Gnd Ref.: NY 765 136 AND PARAPETS

Remarks (Refer to parts by name)

Sheet 12 of 17

PHOTO No 17 WEST SIDE VIEW

PHOTO No 18 EAST SIDE VIEW Sheet 13 of 17

PHOTO No 19

EAST SIDE PARAPET

<u>PHOTO No 20</u>

WEST SIDE PARAPET 三月14日,江水长

PHOTO No 21 SOUTH APPROACH

PHOTO No 22 SOUTH APPROACH

Advied that the structure for a 17 ton We Limit

8/12/99