PLANNING, TRANSPORTATION & ESTATES www.cornwall.gov.uk # RAIL PROPERTY LTD CHILSWORTHY BRIDGE ### **Assessment Report** Document Reference: \$1897/03/200/001 Prepared by The Design & Maintenance Consultancy Planning, Transportation and Estates County Hall, Truro, Cornwall, TR1 3AY ### Issue and Revision Record Revision Date Originator Purpose of Issue/Nature of Change 0 March 04 SNS For Approval This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of Cornwall County Council being obtained. Cornwall County Council accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purposes agrees, and will by such use or reliance be taken to confirm his agreement to indemnify Cornwall County Council for all loss or damage resulting therefrom. Cornwall County Council accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned. Document Reference: S1897/03/200/002 | Initial | |---------| | 21/12 | | Initial | | INB | | Initial | | YER | | ssue | | | | nange | | ange | | | **RAIL PROPERTY LTD** BRIDGE ASSESSMENT PROGRAMME 1999/2000 CHILSWORTHY BRIDGE LINE NAME: CALLINGTON BRANCH ELR: CAL, 5m 29c **ASSESSMENT REPORT** Prepared by The Design & Maintenance Consultancy Planning Transportation and Estates Cornwall County Council B.Sc., CEng., FICE, FIStructE, FIHT Departmental Director, County Hall, TRURO TR1 3AY. Structure: Chilsworthy Bridge Date: March 2004 ### **SYNOPSIS** The structure has the capacity of 40 Tonnes Assessment Live Load. The assessment inspection carried out in February 1999 indicated that the bridge was generally in a reasonable condition and no defects likely to affect durability were observed. The structure is not on an abnormal load route so HB load cases were not considered. Structure: Chilsworthy Bridge Date: March 2004 | Contents | |----------| |----------| | 1 | n | ١N | TR | OD | HC: | TION | J | |---|---|----|----|----|-----|------|---| | | | | | | | | | ### 2.0 INSPECTION DETAILS ### 3.0 ASSESSMENT FINDINGS - 3.1 Basis of Assessment - 3.2 Principal Dimensions, Materials and Factors - 3.3 Analysis Technique - 3.4 40 Tonne Assessment Live Load - 3.5 HB Assessment - 3.6 Substructure ### 4.0 RESULTS TABLE ### 5.0 CONCLUSION ### **APPENDICES** - A Assessment Inspection Report / Approval in Principle - **B** Assessment Calculations - C Certificate of Assessment and Checking Date: March 2004 ### 1.0 INTRODUCTION Cornwall County Council was appointed by Rail Property Ltd. to undertake the inspection and assessment of 42 Rail Property Ltd. owned bridges. This report covers the Assessment of Chilsworthy Bridge. The structure carries the Class III C507 road from Delaware Road, Chilsworthy, to Gunnislake, over the Callington Branch Line (ELR: CAL, 5m 29c) and is located at grid reference SX 419 720. ### 2.0 INSPECTION DETAILS Chilsworthy Bridge was inspected on 11 February 1999. The detailed findings of the inspection are contained in the Assessment Inspection Report dated May 1999. (See Appendix A). Generally the structure is in a reasonable condition. The defects noted during the inspection are summarised as follows:- - i) Surface corrosion on the troughs with areas of flaking paint. - ii) Loss of section to rivet heads in troughing. - iii) Damp penetration through abutments. - iv) Crack in masonry section of parapet. ### 3.0 ASSESSMENT FINDINGS ### 3.1 Basis of Assessment The assessment has been carried out to BD 21/01 and its complementary Advice Note BA 16/97, in accordance with the Approval in Principle dated April 2001. The width of the carriageway allows for two lanes of traffic, and worst case loadings were assessed accordingly. Centrifugal effects were ignored as the radius of curvature of the carriageway was estimated to be above 600m. Record drawings were available for this structure but previous inspection records were not. Date: March 2004 ### 3.2 Principal Dimensions, Materials and Factors The structure is an over-line single span fabricated steel trough deck consisting of steel edge girders riveted to longitudinal steel troughing. Steel T-sections riveted to the edge girders with timber panels form the parapets. The skew span was 4.70m and the square 4.34m. The troughing depth was measured as 305mm. The characteristic strength of the steel was taken as 230N/mm². The abutments are of a square rough faced random rubble granite construction. There are currently no limitations on normal highway loading over the structure. ### 3.3 Analysis Technique The analysis takes into account both bending and shears for the two typical elements of the deck, an edge trough and a middle trough. The loading, as defined in Clause 5.8 of BD 21/01 was applied as per Clauses 6.10 to 6.12 of BD 21/01, for longitudinal trough decks. Distribution and dispersal of the loading is in accordance with Clause 6.14 of BD 21/01. Reduction Factors were applied to the UDL and KEL for the longitudinal troughing. A check on the shear capacity of the rivets was carried out in accordance with Clause 14.5.3.4 of BD 56/96. ### 3.4 40 Tonne Assessment Live Load The analysis resulted in a Live Load Capacity of 40 tonnes. The following factors were used in the analysis:- | Partial Load Factors | γ_{fl} | - | Troughing | = | 1.10 | |----------------------|----------------------|---|-----------|---|------| | | | | Fill | = | 1.20 | | | | | Surfacing | = | 1.75 | | Live Load Factors | Υfl | _ | HA live | = | 1.50 | The characteristic strength of the steel was taken as 230N/mm². ### 3.5 HB Assessment Assessment for HB loading was not required since the bridge is not on the abnormal load route. Structure: Chilsworthy Bridge Date: March 2004 ### 3.6 Substructure The abutments are considered adequate by qualitative assessment for 40 tonne assessment live loading. The assessment of sub-structures, foundations and retaining walls is based upon the results of their detailed inspection. The abutments showed no signs of distress and there was no evidence of any movement of the foundations. No increases in load are envisaged over this structure which means that, in accordance with 8.5 of BD 21/01, no further assessment is necessary. Page 5 of 12 # Table 1. Steel Trough Deck - Assessment Live Load Date: March 2004 ### 4.0 RESULTS TABLES | Resultant
Live Load | 40 Tonnes | | |--|--|--|--|--|---|----------------| | fuction
for (K)
Sa*d)/Sa*1 | _ | | | | | | | [따 따 는 Of t | h é tonn | dations | <u>N</u> ο incr | eąses i | ר אפע ^{ון} י | re envisaded o | | Structural
Adequacy
Ra*/(Sa*d+Sa*l) | 1.7 | 26.0 | 1.3 | 3.6 | 4.4 | | | Live Load
Assessment
Effect
Sa*I | 108.7 kNm | 211.8 kNm | 133.5 kNm | 160.3 kN | 112.44 KN | | | Capacity For
Assessment
Live Load | 205.68 kNm | 205.68 kNm | 189.02 kNm | 652.29 kN | 638.26 kN | | | Dead Load
Assessment
Effects
Sa*d | 28.32 KNm | 28.32 kNm | 44.98 kNm | 24.91 KN | 38.94 kN | | | Assessment
Resistance
Ra* | 234 KNm | 234 KNm | 234 KNm | 677.2 kN | 677.2 kN | | | Position
In Span | Mid Span
Middle
trough | Mid Span
Middle
trough | Mid Span
Edge trough | End Middle
trough | End Edge
trough | | | Load Case/
Load Effect | HA UDL + KEL
Single Vehide/
Moment | HA UDL + KEL
Two Vehides/
Moment | HA UDL + KEL
Single Vehide/
Moment | HA UDL + KEL
Two Vehicles/
Shear | HA UDL + KEL
Single Vehide/
Shear | | | | 40 Tonnes | 40 Tonnes | | | |----|---------------------------------|--|---------|-------| | 7\ | /e <u>r</u> this | structur | e which | means | | | 40 Tonnes | 40 Tonnes | | | | | Мд | Μp | | | | | 40 Tonnes Mg | 40 Tonnes | | | | | Гĝ | ďγ | | | | | Traffic and Road Conditions For | Middle Trough Two Vehicles / Movement Lp | | | Document Reference: S1897/03/200/001 | Revision | | |----------------------|---------------| | 0 | | | Revision Date | | | 18.05.99 | | | Originator | Initial | | CPG | | | Checked | Initial | | WAB | | | Authorised for Issue | Initial | | MJS | | | | pose
ssue | | Арр | roval | | | ture
nange | | | | RAIL PROPERTY LTD BRIDGE ASSESSMENT PROGRAMME 1998/99 ASSESSMENT INSPECTION REPORT CHILSWORTHY BRIDGE LINE NAME: CALLINGTON BRANCH REF: CAL/5m29ch DATE: MAY 1999 Prepared by The Design Consultancy Transportation and Estates Cornwall County Council B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T., M.C.S.M., County Surveyor, County Hall, TRURO TR1 3AY. Scheme: Rail Property Ltd Bridge Assessment, Cornwall_ Structure: Chilsworthy Bridge Date: May 1999 ### INSPECTION REPORT ### Containing ### **Inspection Report** - 1. INTRODUCTION - 2. DRAWINGS USED FOR BASIS OF INSPECTION - 3. CONDITION REPORT - 3.1 Fabricated Longitudinal Edge Plates - 3.2 Troughing - 3.3 Abutments - 3.4 Wingwalls - 3.5 Parapets - 3.6 Surfacing - 3.7 Embankments - 3.8 Foundations - 3.9 Drainage System - 3.10 Summary ### 4. STATUTORY UNDERTAKERS PLANT - **APPENDIX A Record Drawings and Statutory Undertakers Plant Returns** - APPENDIX B Photographs of Structure - **APPENDIX C** Inspection Record Drawings - APPENDIX D Approval in Principle Form Structure: Chilsworthy Bridge Date: May 1999 ### 1. INTRODUCTION The inspection forms part of the Rail Property Ltd bridge assessment programme. An inspection for assessment was carried out on the 11 February 1999 by CP Gladstone, CA Endean and WA Bartle. The inspection was undertaken in accordance
with the Departmental Standard BD 21/97. The structure is a single span bridge consisting of longitudinal steel troughing with steel T sections riveted to the edge with timber panels to form a parapet. The abutments are constructed of squared rough faced random rubble granite. There are currently no limitations on normal highway loading over the structure. There was no recorded history of this structure available at the time of this inspection. The record drawings were available from Rail Property Ltd. ### 2. INSPECTION DETAILS 2.1 The record drawings were available at the time of this inspection. The main dimensions of the structure were confirmed during the site inspection. ### 2.2 Dimensions Measured | Steel troughing sheet thickness | = | 0.011 metres | |---------------------------------|---|--------------| | Square span | = | 4.340 metres | | Steel troughing sheet width | = | 0.853 metres | | Edge plate (width) | = | 0.381 metres | | Edge plate (thickness) | = | 0.011 metres | | Edge plate (height) | = | 0.270 metres | | Edge plate (thickness) | = | 0.095 metres | | Steel troughing sheet depth | = | 0.305 metres | | Depth of fill over troughing | = | 0.180 metres | Scheme: Rail Property Ltd Bridge Assessment, Cornwall Structure: Chilsworthy Bridge Date: May 1999 Carriageway width = 6.020 metres (square between parapets) Parapet posts = 125mm x 75mm x 12.5mm T sections at 1.25 metre spacings. The horizontal alignment of the road over the structure is linear and as such no allowance for centrifugal effects is required. The vertical alignment is that of a hump backed bridge therefore axle lift off requires consideration. For further details refer to drawing in Appendix C. ### 3. CONDITION REPORT ### 3.1 Fabricated Edge Plates The edges of the bridge are constructed from two steel plates riveted together with a 100mm x 100mm x 12.5mm angle section with the troughing is riveted to the bottom plate (Plates 4 & 12). The plates were found to be in good condition with no signs of corrosion and the paint system was still intact. The rivets were in good condition with only surface rust evident. ### 3.2 Troughing The troughing spans longitudinally between abutments and with seven troughs over the width of the structure. (Plates 4 & 5). There was surface corrosion evident on the troughs (Plates 6, 7 & 11) and the paint system was found to be flaking away in some areas (Plates 4 & 5). The troughs are riveted together with an 11mm plate on the top surface, the bolts are showing particularly significant signs of corrosion (Plate 9). Rivet heads are showing more corrosion with approximately 2mm of loss of section. The troughs were filled with an asphaltic material. ### 3.3 Abutments The abutments are of squared rough faced granite in a random rubble construction (Plates 10 & 11). Granite pad stones support the troughs. There is some evidence of damp penetration and algae growth (Plate 11). The joints are well pointed and are generally flush. The granite was found to be in good condition with no signs of delamination or other defects caused by weathering. The abutments were showing no signs of tilting, bulging or other deformation. Scheme: Rail Property Ltd Bridge Assessment, Cornwall Structure: Chilsworthy Bridge Date: May 1999 ### 3.4 Wingwalls The wingwalls to the structure are of squared rough faced granite in a random rubble construction. They were found to be in good condition with no tilting, bulging, cracking or other deformation. The joints are well pointed and generally flush. ### 3.5 Parapets The parapets are constructed from timber panels which are riveted to five steel posts. The posts are 125mm x 75mm x 12.5mm steel T sections riveted to an angle section connected to the troughing. The distance between posts is 1.255 metres (Plates 1, 2, 13 & 14). The panels have been painted with a preservative paint and were not showing any signs of rot. There was a localised area of vegetation growth at the base of the parapet (Plate 14). On the north - west side of the bridge there is a masonry retaining wall beyond the extent of the bridge and is constructed from squared rough faced local siltstone. There is a large crack in the parapet in this section (Plate 17). ### 3.6 Surfacing The width of the carriageway is 6.020 metres between parapets there is a 300mm verge on the east side (Plates 15 & 16). The inspection recorded no severe rutting or subsidence within the carriageway. ### 3.7 Embankments The embankments on each side of the bridge are covered in ground covering vegetation. There was no evidence of slips or water runs. ### 3.8 Foundations There was no evidence to suggest the type and form of the foundations of the structure. Since the structure shows no signs of foundation movement it is assumed that the foundations are adequate. ### 3.9 Drainage System There was no evidence of any drainage systems. ### 3.10 Summary The bridge was in reasonable condition with the corrosion as the only form of deformation. An appropriate condition factor should be Fc = 1.0 Scheme: Rail Property Ltd Bridge Assessment, Cornwall_ Structure: Chilsworthy Bridge Date: May 1999 ### 4. STATUTORY UNDERTAKERS PLANT The following statutory undertakers have the following plant at the bridge location: British Telecom Overhead line over the bridge. Underground cable under the west carriageway. Scheme: Rail Property Ltd Bridge Assessment, Cornwall_ Structure: Chilsworthy Bridge Date: May 1999 ### APPENDIX A **Record Drawings and Statutory Undertakers Plant Returns** Plant Protection Control pp 100 Priorswood T.E.C. Venture Way Taunton TA2 8DB Yours Faithfully Tel. FREEFONE DIAL BEFORE YOU DIG VIA THE OPERATOR Your Ref: 51897/100/18/03 Our Ref: 0109961628 125 MAR 1999 | Dear Sir / Madam RE. PROPOSED ROAD WORKS AT CHUSWORTH! | |--| | I thank you for your letter dated 18 (CB) regarding the above | | described works. | | Your plan(s), returned herewith, has / have been marked to show the approximate position of B.T. plant in the vicinity. | | If desired, B.T. plant affected by your proposals can be marked on site by my representative, provided the proposed line and extent of your work is indicated on site either by prior marking or by your representative at a joint site meeting. | | When works are being carried out, if serious risk of damage is to be avoided, it is recommended that mechanical excavators or borers are not used within 600mm of B.T. plant. | | | ## SPECIAL REQUIREMENTS IN RELATION TO BRITISH TELECOMMUNICATIONS PLC - 1 In this Special Requirement the following terms shall have the meanings assigned to them: - a) 'Company' means British Telecommunications Plc - b) 'Company Representative' means the staff of British Telecommunications Plc or its Authorised Representatives and Agents. - c) 'Apparatus' means all surface or sub-surface equipment and plant including any associated cabling and/or ducting owned, leased or rented by British Telecommunications Plc. Before commencing any work or moving heavy plant or equipment over any portion of the Site the Contractor shall confirm details of the Apparatus, owned, leased or rented by the Company, within the Site with the Company Representative, who can be contacted at the following point: - Address: - British Telecommunications Engineering Centre Priorswood Industrial Estate TAUNTON Somerset TA2 8DB Fax: - 01823 331655 - Where such details show that the works or the movement of plant or equipment may endanger the Apparatus of the Company, the Contractor must give the Company Representative at least 7 days written notice of the date on which it is intended to commence such works or the movement of plant and equipment in order that the presence of any sub-surface Apparatus can be indicated by markers to be supplied by the Company and placed by the Contractor under the supervision of a Company Representative. The Contractor shall ensure that all Company Apparatus, particularly surface running cabling, is adequately protected from damage and such protective measures shall be approved by the Engineer. Also at any point at which Contractors heavy plant crosses the BT duct it should be protected with a 150mm raft of reinforced concrete placed at a minimum of 150mm above the BT ducts. - 4 In the event of a Company marker being disturbed for any reason it shall not be replaced other than in the exact position and to its former depth unless repositioning is carried out at the direction and under the supervision of a Company Representative. - 5 The Contractor shall take particular care in relation to the protection of Company Apparatus, where such Apparatus includes the presence within the Site of optical fibre and/or co-axial cabling. The Contractor should particularly note that damage to such Apparatus is extremely disruptive to the Company network and costly to reinstate. The Contractor shall make every effort to avoid the disturbance of Company Apparatus more than is absolutely necessary for the completion of the Works in accordance with the Contract. - 6 When excavating around, moving or backfilling around Company Apparatus, the Company Representative shall be given adequate notice, which shall not be less than 3 days, of the Contractor's intentions in order that he may supervise the works. The Contractor should note that the normal depth of cover for Company Apparatus and ducts is as follows: - a) In carriageways 600mm, which is to be maintained. - b) In footways 450mm, which is to be maintained. Where the 600/450mm depth of cover cannot be maintained the Contractor shall carry out the instructions of the Engineer for the protection of Company Apparatus and such actions that follow from the Engineer's instruction shall be supervised by a Company Representative.
Where the required depth of cover cannot be maintained over cabling, such cables as are affected shall be enclosed and protected in PVC duct and encased in concrete as directed by the Company Representative. All excavation adjacent to Company Apparatus is to be carried out by hand until the exact extent and/or location of Company Apparatus is known. Mechanical borers and/or excavators shall not be used within 1.0m of Company Apparatus without the supervisory presence of a Company Representative. To prevent any movement of Company Apparatus during excavation, complete shuttering shall be used as directed by the Engineer if: - - a) Excavation is deeper than the depth of cover of adjacent Company Apparatus. - b) Excavation is within 1.0m of Company Apparatus in stable soil. - c) Excavation is within 5.0m of Company Apparatus in unstable soil. If for the completion of the Works the Contractor intends using any of the following: - - i) Pile driving equipment within 10.0m of Company Apparatus. - ii) Explosives within 20.0m of Company Apparatus. - iii) Laser equipment within 10.0m of Company Apparatus. The Contractor shall advise the Company Representative, giving at least 7 days written notice, in order that any special protective # Transco Our Ref:- NRSWA/W6/33119 Your Ref: - S1897/100/18/03 P. O. Box 502 Malago House Bedminster Road Bedminster Bristol BS99 5RS Telephone 0117 953 5444 **Cornwall County Council Transportation & Estates** The Design Consultancy County Hall Truro TR13AY 05 March 1999 Dear Sir/Madam. ### CHILSWORTHY We acknowledge receipt of your inquiry on the 04/03/99, and return herewith one copy of our drawing which we have indicated the approximate position of existing gas mains and would request that care is exercised when working in the vicinity of these mains. In this respect our schedule is also attached which indicates the minimum requirements for the protection of our underground plant, and your attention is also drawn to the liability clause stamped on the plan. We do not show service pipes on our drawing but their presence should be anticipated. Where the site is indicated as being fed by another Private Gas Transporter (PGT) you should contact that company for details of their mains as we do not hold these on file. Will you please inform us of your actual date of commencement as soon as possible. If necessary arrangements can be made for our staff to inspect our plant on site as work progresses. Should you require any further details or information regarding our mains and services please contact work Records at the District Office. Telephone No. 0117 953 6842. Yours Faithfully Transco South West LDZ Transco operates in the UK and is part of BG plc BG plc Registered in England No. 2006000 Registered Office 100 Thames Valley Park Drive Reading, Berkshire RG6 1PT Note: The information shown on this plan is given without obligation, or warranty. The accuracy thereof cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by BG plc. its agents or servants for any error or omission. The actual position of mains and services must be verified and established on site before any mechanical plant is used. This plan is reproduced from (or based on) the Ordnance Survey map by BG plc, with the sanction of the Controller of H.M. Stationery Office. Crown copyright reserved. *Шининининини* RHP MAINS NHP MAINS MAINS TO BE ABANDONED Dowrglann, Stennack Road, Holmbush Industrial Estate, St Austell, Cornwall PL25 3SW Telephone Main Switchboard (01726) 66766 Fax (01726) 64057 Customer Service Enquiries 0345 77 66 77 (local call rate) TRANSPORTATION & ESTATES CORNWALL COUNTY COUNCIL COUNTY HALL TRURO TR13AY The Records Centre Date: 05/03/1999 Direct Line: (01726) 626228 Fax Line: (01726) 626297 email: awillicot@south-west-water.co.uk F.A.O. M.J. STRIBLEY Our reference: RCW/N/1823 Your reference: S1897/100/18/03 Dear Sir / Madam, I refer to your notice dated 18/02/1999, **RE: CHILSWORTHY** Notice is hereby given that the Company's apparatus, shown on the attached plan, and service connections may be affected by the works proposed. You are required to comply with the measures specified in the attached schedule which indicate the minimum requirements for the protection of the company's apparatus. The information indicated on any attached plans is provided only as a guide and no assurance of its accuracy is given or implied. The company accepts no liability whatsoever for any error or omission in the information. It should be noted that not all mains, service pipes, drains and other apparatus of the Company in the area of the plan are shown. Records Technician. Cornwall County Council Transportation & Estates The Design Consultancy County Hall Truro, Cornwall TR1 3AY Map Response Team Mapping Centre Osprey Road Sowton Industrial Estate Exeter EX2 7HZ Telephone 01392 448722 Fax 01392 444204 Our ref N57850 SO Your ref \$1897/100/18/03 Date 5 March 1999 Dear ### , CHILSWORTHY Thank you for your enquiry dated 18 February 1999. I enclose a copy of our mains records indicating the position of the Company's apparatus in the vicinity of your proposed works. This information is given as a general guide only and its accuracy cannot be guaranteed. Where work is to take place in the vicinity of our plant it is a requirement under the Electricity at Work Regulations 1989 and the Health and Safety at Work Act 1974, that employees should define and practise safe working procedures. Works should be carried out in accordance with the Health and Safety Executive's publications GS6 and HS(G)47. Diversions to our overhead lines and/or underground cables may be required to allow the development to go ahead. The cost of any alterations may be charged to the developer. Would you please inform me in writing as soon as you decide to go ahead with your works. We will then prepare detailed proposals and provide a quotation for any necessary alterations to our equipment on the site. Our scheme may require the negotiation of wayleaves and other statutory consents and could take several months to complete from the date of your notification. Yours faithfully, Unique Ref. No. \$ Project 81897/03 File 160 Response required YES / 100 DS8-010 Scheme: Rail Property Ltd Bridge Assessment, Cornwall_ Structure: Chilsworthy Bridge Date: May 1999 ### APPENDIX B ### Photographs of Structure | Plate 1 | Mileage reference and west parapet | |----------|--------------------------------------| | Plate 2 | West elevation | | Plate 3 | East elevation | | Plate 4 | General view of the soffit | | Plate 5 | Troughing and south abutment | | Plate 6 | Troughing detail | | Plate 7 | Troughing detail | | Plate 8 | Top of abutment and troughing detail | | Plate 9 | Bolts on soffit | | Plate 10 | South abutment | | Plate 11 | South abutment | | Plate 12 | Vegetation growth through the bridge | | Plate 13 | Vegetation growth on edge plate | | Plate 14 | East parapet | | Plate 15 | View over structure looking south | | Plate 16 | View over structure looking north | | Plate 17 | Crack in parapet | | Plate 18 | Trial pit in the carriageway. | CHILSWORTHY BRIDGE PLATE 1 Mileage reference and west parapet 09.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 2 West elevation 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 3 East elevation. 09.02.99 CHILSWORTHY BRIDGE PLATE 4 General view of the soffit. 09.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 5 Troughing and south abutment. 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 6 Troughing detail - note extent of corrosion. CHILSWORTHY BRIDGE PLATE 7 Troughing detail. 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 8 Top of abutment and troughing deta 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 9 Bolts on soffit - note corrosion. 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 10 South abutment. 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 11 South abutment - note damp penetration and algea growth 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 12 Vegetation growth through the bridge. CHILSWORTHY BRIDGE PLATE 13 Vegetation growth on edge plate. 11.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 14 East parapet. 09.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 15 View over structure looking south CHILSWORTHY BRIDGE PLATE 16 View over the structure looking north. 09.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 17 Cracking in masonry section of parapet. 09.02.99 RAIL PROPERTY LTD BRIDGE ASSESSMENTS CHILSWORTHY BRIDGE PLATE 18 Trial pit in the carriageway Scheme: Rail Property Ltd Bridge Assessment, Cornwall_ Structure: Chilsworthy Bridge Date: May 1999 #### APPENDIX C #### **Inspection Records Drawings** DRAWING TITLE CHILSWORTHY BRIDGE - LAYOUT PLANS E.L.R.: CAL MILEAGE: 5m 29ch GRID REF No.: SX 419 720 | | ORIGINATOR | CHECKED | AUTHORISED | | |----------|------------|---------|------------|--| | INITIALS | JUP P | 557 | 57 | | | DATE | FEB 99 | APR 77 | APR 97 | | **S**CALE AS SHOWN DRAWING NO S1897/03/D/S101 REVISION SECTION THROUGH & OF BRIDGE LOOKING NORTH IOX 75 TIMBER PLATE CONNECTED TO 125 x 75 x 12.5 \(\), WITH 4 N°. 125 x 75 x 12.5 \(\), WITH 4 N°. 15 NM THICK TIMBER PLATE WITH 4 N° 12 NM BOLTS G5 x 65 x 12 ANGLE 30 NM & BOLTS 10 x 10 x 12 ANGLE 30 NM & BOLTS 10 x 10 x 12 ANGLE 30 NM & BOLTS PARAPET DETAILS **P**ROJECT RAIL PROPERTY LTD ASSESSMENTS DRAWING TITLE CHILSWORTHY BRIDGE - ELEVATIONS & SECTIONS BRIDGE NAME: CHILSWORTHY E.L.R.: CAL MILEAGE: 5m 29 ch GRID REF No.: SX 419 720 | | ORIGINATOR | CHECKED | AUTHORISED | |----------|------------|---------|------------| | INITIALS | PLF. | 557 | STZ | | DATE | MAR 99 | APR 99 | APR99 | **S**CALE AS SHOWN DRAWING NO
REVISION S1897/03/D/S102 Scheme: Rail Property Ltd Bridge Assessment, Cornwall_ Structure: Chilsworthy Bridge Date: May 1999 #### Appendix D #### **Approval in Principle Form** | British Railways Board FORM 'AA' (BRIDGES) | Group Standard GC/TP0356 Appendix: 4 Issue: 1 Revision: A | |---|---| | APPROVAL IN PRINCIPLE FOR ASSESSMENT | Date: FEB 93 | | BRITISH RAILWAYS BOARD | | | BRIDGE ASSESSMENTS | | | LINE NAME: CALLINGTON BRANCH
BRIDGE ID: CAL/5m29ch
OS Map Ref: SX 419 720
BRIDGE NAME: CHILSWORTHY | | | APPROVAL IN PRINCIPLE FOR ASSESSMEN | T | | MAY 1999 | | 1. Name of organisation carrying out the work The Design and Maintenance Consultancy ## British Railways Board FORM 'AA' (BRIDGES) #### Group Standard Appendix: 4 Issue: 1 Revision: A Date: FEB 93 GC/TP0356 **APPROVAL IN PRINCIPLE FOR ASSESSMENT** | | | Transportation and Estates
Cornwall County Council | |-----|--|--| | 2. | Identification of Structure | | | 2.1 | Name | Chilsworthy Bridge | | 2.3 | Line Name | Callington Branch | | 2.4 | Engineer's line reference | CAL/5m29ch | | 2.5 | Type of bridge | Steel fabricated edge plates with a troughe deck | | 2.6 | Status of bridge | Road bridge | | 2.7 | Permitted speed of traffic carried by bridge | 60mph | | 2.8 | Type of highway passing over bridge | Class III Road | | 3. | Description of structure, including defects | | | 3.1 | Structure type | Single span fabricated edge plates with a troughed deck | | 3.2 | Foundation type | 1.2m wide pad foundations | | 3.3 | Substructure type | Mass granite abutment | | 3.4 | Superstructure type | Fabricated steel edge plates with longitudinal troughing | | 3.5 | Span arrangements | The skew span is 4.700m | | 3.6 | Articulation arrangements | N/A | | 3.7 | Parapet type | Steel T section posts at 1.25m centres with 19mm timber panels | | 3.8 | Details of any special or unusual features | None | | 3.9 | Materials and Finishes | | | | 3.9.1 Troughing | Steel fy = 230 N/mm ² | | | 3.9.2 Parapet posts | Steel fy = 230N/mm^2 | | | 3.9.3 Parapet panels | Timber | | 4. | Assessment Criteria | | | 4.1 | Traffic Speed to be used | The maximum allowable traffic speed is 60mph. | | | | | #### British Railways Board FORM 'AA' (BRIDGES) Group Standard GC/TP0356 Appendix: 4 Issue: 1 Revision: A Date: FEB 93 #### APPROVAL IN PRINCIPLE FOR ASSESSMENT | 4.2 | Live loading to be used | | |-----|--|--| | | 4.2.1 HA Loading | The steel troughing and fabricated steel edge girders will be assessed for HA UDL, together with KEL, a single axle and single wheel load in accordance with Clause 5.8 of BD 21/97. | | | 4.2.2 Footway live loading | N/A. | | | 4.2.3 HB loading | The bridge is not on the abnormal load route therefore HB loading will not be considered. | | 4.3 | Other loads to be used | Axle lift off requires consideration but centrifugal effects are not relevant. | | 4.4 | Authorities consulted and any special conditions required | South West Water South Western Electricity British Telecom Transco Cable & Wireless/Mercury Rail Property Ltd. | | | 4.4.1 Effect of statutory undertakers plant on strength of structure. | From the inspection and information provided by the bodies listed above. There is no reason to believe any apparatus will affect the assessment. | | 4.5 | List of relevant standards to be used | TAS dated June 1989. See Appendix A. | | | 4.5.1 Additional relevant DOT Standards published since the above edition of the TAS including amendments. | See Appendix B. | | 4.6 | Proposed departures from standards given in 4.5 and 4.5.1. | None | | 4.7 | Proposed methods of dealing with aspects not covered by standard in 4.5 and 4.5.1. | None | | 5. | Structural Analysis | | | 5.1 | Method of analysis proposed for superstructure, substructure and foundations. | (i) The troughing will be analysed in accordance with 6.9 to 6.14 of BD 21/97 and 9.1 to 9.3 of BA 16/97. (ii) Abutments, wingwalls and foundations will be assessed qualitatively in accordance with BD21/97, Chapter 8 (iii) Section properties will be based upon measured dimensions after allowing for corrosion. | | 5.2 | Description and diagram of idealised structure. | See Appendix C. | Appendix: 4 Issue: 1 Revision: A Date: FEB 93 GC/TP0356 #### APPROVAL IN PRINCIPLE FOR ASSESSMENT | 5.3 | Assumptions intended for calculation of structural | |-----|--| | | element stiffness. | Soil parameters for mechanism methods are detailed in Section 5.4 5.4 Proposed earth pressure coefficients to be used in design N/A of earth retaining elements. #### 6. **Ground Conditions** 6.1 Information used to justify ground conditions used for No information available analysis. 6.2 Ground condition effects proposed to be taken into account. No adverse ground conditions found to affect the superstructure #### 7. **Drawings and Documents** 7.1 List of drawings, numbers, documents and other information accompanying this submission. Appendix A - TAS Schedule Appendix B - Additional Standards Appendix C - Idealised Structure Assessment Inspection Report dated March 1999 7.1.1 The assessment will be based on the following None record drawings The above is submitted for acceptance į Name: 8. Title/Professional Qualification: Project Director The Design Consultancy Cornwall County Council Date: 8 March 200 (Sections 1 to 8 above shall be completed and signed by the Project Director.) Group Standard Appendix: 4 Issue: 1 Revision: A Date: FEB 93 GC/TP0356 #### APPROVAL IN PRINCIPLE FOR ASSESSMENT 9. The above approved subject to the following comments and conditions. Comments: Supersmothere to have a Cat I check. This Form AA has been subject to technical review and is considered to state the appropriate assessment requirements for the bridge. | Name: | | | | | |---------|--|--|--|--| | Signed: | | | | | # British Railways Board FORM 'AA' (BRIDGES) GC/TP0356 Appendix: 4 Issue: 1 Revision: A Date: FEB 93 APPROVAL IN PRINCIPLE FOR ASSESSMENT #### **APPENDIX A** #### TECHNICAL APPROVAL SCHEDULE **Dated June 1989** FORM 'AA' (BRIDGES) **Group Standard** GC/TP0356 Appendix: 4 Issue: 1 Revision: A Date: FEB 93 #### APPROVAL IN PRINCIPLE FOR ASSESSMENT #### APPENDIX A TECHNICAL APPROVAL SCHEDULE 'TAS' (JUNE 1989) SCHEDULE OF DESIGN DOCUMENTS RELATING TO HIGHWAY BRIDGES AND STRUCTURES (All documents are taken to include revisions current at date of this TAS). #### BRITISH STANDARDS BS 153 Part 3A, Specification for Steel Girder Bridges (see BE 1/77). BS 5268 Part 2, Structural Use of Timber BS 5400 - Steel concrete and composite bridges Part 1: 1978 - General Statement (see BD 15/82) Part 2: 1978 - Specification for loads (see BD 14/82) Part 3: 1982 - CP for design of steel bridges (see BD 13/82) Part 4: 1984 - CP for design of concrete bridges (see BD 24/84) Part 5: 1979 - CP for design of composite bridges (see BD 16/82) Part 9: 1983 - Bridge bearings (see BD 20/83) Part 10: 1980 - CP for fatigue (see BD 9/81) BS 5930: 1981 - Site investigations BS-6031: 1981: Earthworks #### 2. BRITISH STANDARD CODES OF PRACTICE CP-114 Part 2 Reinforced concrete in buildings (see Tech Memo BE 1/73) CP 116 Part 2 The structural use of precast concrete (see Tech Memo BE 1/73) CP 118 The structural use of aluminium CP 2 Earth retaining structures CP 2004 Foundations #### 3. Dtp PUBLICATIONS (HMSO) Railway construction and Operation Requirements, Structural and Electrical clearances (1977). Railway construction and operation. Requirements for passenger lines and recommendations for goods lines 1950 (reprinted 1970). Roads in urban areas and Metric Supplement (as amended by TA-32/82). Layout of roads in rural areas and Metric Supplement (as amended by TA 28/82). #### British Railways Board **IM 5** FORM 'AA' (BRIDGES) **Group Standard** GC/TP0356 Appendix: 4 Issue: 1 Revision: A Date: FEB 93 APPROVAL IN PRINCIPLE FOR ASSESSMENT Specification for Highway Works and Notes for Guidance (1986 Edition). Highway Construction Details (1987 Edition). Simplified Tables of External loads on Buried Pipelines (1970). **MISCELLANEOUS** Circular Roads No. 61/72 - Routes for heavy and high abnormal loads. **TECHNICAL MEMORANDA (BRIDGES)** 5. The design of Highway bridge parapets (4th revision). BE 27 Waterproofing and surfacing of bridge decks. BE 3/72 Expansion joints for use in highway bridge decks. BE 1/73 Reinforced concrete for highway structures (Relevant ports for the design of buried precast concrete pipes and sign/signal gantries only). BE 1/74 The independent checking of erection proposals and temporary works details for major highway structure on trunk roads and motorways. BE 8/75 Painting of concrete highway structures. Standard highway loadings (Relevant parts for the design of buried precast concrete pipes and sign/signal gantries only). BE 7/77 Department standard (interim) motorway sign/signal gantries. BE 1/78 Design criteria for footbridges and sign/signal gantries (Relevant for the design of sign/signal gantries only). BE 3/78 Reinforced earth and anchored earth retaining walls and bridges abutments for embankments. 6. HIGHWAYS TECHNICAL MEMORANDA Noise barriers - Standard and Materials 7. **INTERIM MEMORANDA (BRIDGES)** Formation of continuity joints in
bridge decks Group Standard FORM 'AA' (BRIDGES) GC/TP0356 Appendix: 4 Issue: 1 Revision: A Date: FEB 93 #### **APPROVAL IN PRINCIPLE FOR ASSESSMENT** | 8. DEPARTMENTAL STANDARDS 8.1 TRAFFIC ENGINEERING AND CONTROL TD 2778 Pedestrian Subways layout and dimensions TD 3779 Combined pedestrian and cycle subways layout and dimensions TD 9/81 Road layout and geometry. Highway link design TD 19/85 Safety fences and barriers TD 27786 Cross Sections and headroom 8.2 BRIDGES AND STRUCTURES BD 2/89 Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk-roads and motorways BD 7/81 Weathering steel for highway structures BD 9/81 Implementation of BS 5400 Pt 10, CP for fatigue BD 10/82 Design of highway structures in areas of mining subsidense BD 12/82 Corrugated steel buried structures BD 13/82 Design of steel buried structures BD 14/82 Loads for highway bridges—Use of BS 5400 Pt 2: 1978 BD 16/82 Design of composite bridges—Use of BS 5400 Pt 1: 1978 BD 16/82 Design of composite bridges—Use of BS 5400 Pt 2: 1983 BD 19/83 Standard Bridges BD 20/83 Bridge Bearings—Use of BS 5400 Pt 1: 1984 BD 26/86 Design of concrete bridges—Use of BS 5400 Pt 4: 1984 BD 26/86 Design of fighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete bridges abutments | | AFFRU | VAL IN FRINCIPLE FOR ASSESSMENT | |---|---------------|---------------------|---| | TD 2/78 — Pedestrian Subways — layout and dimensions TD 3/79 — Combined pedestrian and eyele subways — layout and dimensions TD 9/81 — Road layout and geometry. — Highway link design TD 19/85 — Safety fences and barriers TD 27/86 — Cross Sections and headroom 8.2 — BRIDGES AND STRUCTURES BD 2/89 — Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 — Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk- roads and motorways BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10.82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Pt 1: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of ilighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design-oriteria for footbridges | . | 8. | DEPARTMENTAL STANDARDS | | TD 2/79 — Combined pedestrian and eyele subways—layout and dimensions TD 9/81 — Road layout and geometry.—Highway link design TD 19/85 — Safety fences and barriers TD 27/86 — Cross Sections and headroom 8.2 BRIDGES AND STRUCTURES BD 2/89 Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 — Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk-roads and motorways BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10/82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Pt 1: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of ilighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal eracking of concrete BD 29/87 — Design criteria for footbridges | | 8.1 | TRAFFIC ENGINEERING AND CONTROL | | TD 9/81 — Road layout and geometry. Highway link design TD 19/85 — Safety-fences and barriers TD 27/86 — Cross Sections and headroom 8.2 — BRIDGES AND STRUCTURES BD 2/89 — Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 — Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk roads and motorways BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10.82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 12/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 1: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Pa 1: 1984 BD 20/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal eracking of concrete BD 29/87 — Design criteria for footbridges | | TD 2/78 | Pedestrian Subways - layout and dimensions | | TD 19/85 — Safety fences and headroom 8.2 BRIDGES AND STRUCTURES BD 2/89 Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 — Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk-roads and motorways BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10/82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 28/87 — Design criteria for footbridges | | TD 3/79 | Combined pedestrian and cycle subways - layout and dimensions | | BRIDGES AND STRUCTURES BD 2/89 Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk-roads and motorways BD 7/81 Weathering steel for highway structures BD 9/81 Implementation of BS 5400 Pt 10, CP for fatigue BD 10.82 Design of highway structures in areas of mining subsidence BD 12/82 Corrugated steel buried structures BD 13/82 Design of steel bridges—Use of BS 5400 Pt 3: 1982 BD 13/82 Design of steel bridges—Use of BS 5400 Pt 2: 1978 BD 15/82 General principles—Use of BS 5400 Pt 1: 1978 BD 15/82 General principles—Use of BS 5400 Pt 1: 1978 BD 19/83 Standard Bridges BD 20/83 Bridge Bearings—Use of BS 5400 Part 9: 1983 BD 21/84 The assessment of highway bridges and structures BD 24/84 Design of concrete bridges—Use of BS 5400 Pt 4: 1984 BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 28/87 Design criteria for footbridges | | TD 9/81— | Road layout and geometry. Highway link design | | BRIDGES AND STRUCTURES BD 2/89 Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk roads and motorways BD 7/81 Weathering steel for highway structures BD 9/81 Implementation of BS 5400 Pt 10, CP for fatigue BD 10/82 Design of highway structures in areas of mining subsidence BD 12/82 Corrugated steel buried
structures BD 13/82 Design of steel bridges - Use of BS 5400 Pt 3: 1982 BD 14/82 Loads for highway bridges - Use of BS 5400 Pt 2: 1978 BD 15/82 General principles - Use of BS 5400 Pt 1: 1978 BD 15/82 Design of composite bridges - Use of BS 5400 Pt 5: 1979 BD 19/83 Standard Bridges BD 20/83 Bridge Bearings - Use of BS 5400 Part 9: 1983 BD 24/84 The assessment of highway bridges and structures BD 24/84 Design of concrete bridges - Use of BS 5400 Pt 4: 1984 BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | · | TD 19/85 | Safety fences and barriers | | BD 2/89 Technical approval of Dtp highway structures on motorways and other trunk roads BD 6/81 — Approval in principle and calibrating of computer programs for use in Dtp highways structures on trunk- roads and motorways BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10/82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 1: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of ighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | _ | TD 27/86 | Cross Sections and headroom | | BD 6/81 — Approval in principle and calibrating of computer programs for use in Dtp highways structures and motorways BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10/82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | | 8.2 | BRIDGES AND STRUCTURES | | BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10.82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal eracking of concrete BD 29/87 — Design criteria for footbridges | - | BD 2/89 | Technical approval of Dtp highway structures on motorways and other trunk roads | | BD 7/81 — Weathering steel for highway structures BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10.82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | • | | | | BD 9/81 — Implementation of BS 5400 Pt 10, CP for fatigue BD 10.82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 1: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | - | | · | | BD 10.82 — Design of highway structures in areas of mining subsidence BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 3: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | | | | | BD 12/82 — Corrugated steel buried structures BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 2: 1982 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 1: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | - | BD 9/81 | Implementation of BS 5400 Pt 10, CP for fatigue | | BD 13/82 — Design of steel bridges — Use of BS 5400 Pt 2: 1978 BD 14/82 — Loads for highway bridges — Use of BS 5400 Pt 2: 1978 BD 15/82 — General principles — Use of BS 5400 Pt 1: 1978 BD 16/82 — Design of composite bridges — Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | | BD 10.82 | Design of highway structures in areas of mining subsidence | | BD 14/82 Loads for highway bridges – Use of BS 5400 Pt 2: 1978 BD 15/82 General principles – Use of BS 5400 Pt 1: 1978 BD 16/82 Design of composite bridges – Use of BS 5400 Pt 5: 1979 BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings — Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | 100 00 | BD 12/82 | -Corrugated steel buried structures | | BD 15/82 General principles Use of BS 5400 Pt 1: 1978 BD 16/82 Design of composite bridges Use of BS 5400 Pt 5: 1979 BD 19/83 Standard Bridges BD 20/83 Bridge Bearings - Use of BS 5400 Part 9: 1983 BD 21/84 The assessment of highway bridges and structures BD 24/84 Design of concrete bridges Use of BS 5400 Pt 4: 1984 BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | _ | BD 13/82 | Design of steel bridges - Use of BS 5400 Pt 3: 1982 | | BD 16/82 Design of composite bridges - Use of BS 5400 Pt 5: 1979 BD 19/83 Standard Bridges BD 20/83 Bridge Bearings - Use of BS 5400 Part 9: 1983 BD 21/84 The assessment of highway bridges and structures BD 24/84 Design of concrete bridges - Use of BS 5400 Pt 4: 1984 BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | | BD 14/82 | Loads for highway bridges - Use of BS 5400 Pt 2: 1978 | | BD 19/83 — Standard Bridges BD 20/83 — Bridge Bearings – Use of BS 5400 Part 9: 1983 BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges – Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD
28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | - | BD 15/82 | General principles - Use of BS 5400 Pt 1: 1978 | | BD 20/83 Bridge Bearings - Use of BS 5400 Part 9: 1983 BD 21/84 The assessment of highway bridges and structures BD 24/84 Design of concrete bridges - Use of BS 5400 Pt 4: 1984 BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | | BD-16/82 | Design of composite bridges - Use of BS 5400 Pt 5: 1979 | | BD 21/84 — The assessment of highway bridges and structures BD 24/84 — Design of concrete bridges — Use of BS 5400 Pt 4: 1984 BD 26/86 — Design of lighting columns BD 27/86 — Materials for the repair of concrete highway structures BD 28/87 — Early thermal cracking of concrete BD 29/87 — Design criteria for footbridges | ,- | BD 19/83 | -Standard Bridges | | BD 24/84 Design of concrete bridges - Use of BS 5400 Pt 4: 1984 BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | | BD 20/83 | Bridge Bearings - Use of BS 5400 Part 9: 1983 | | BD 26/86 Design of lighting columns BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | pine. | BD 21/84 | The assessment of highway bridges and structures | | BD 27/86 Materials for the repair of concrete highway structures BD 28/87 Early thermal cracking of concrete BD 29/87 Design criteria for footbridges | gian. | BD 24/84 | Design of concrete bridges - Use of BS 5400 Pt 4: 1984 | | BD 28/87—Early thermal cracking of concrete BD 29/87—Design criteria for footbridges | | BD 26/86 | Design of lighting columns | | BD 29/87 Design criteria for footbridges | - | BD 27/86 | Materials for the repair of concrete highway structures | | | | BD 28/87 | Early thermal cracking of concrete | | BD 30/87 Backfilled retaining walls and bridge abutments | - | BD 29/87 | Design criteria for footbridges | | | | BD 30/87 | Backfilled retaining walls and bridge abutments | ### British Railways Board FORM 'AA' (BRIDGES) **Group Standard** Appendix: 4 Issue: 1 Revision: A Date: FEB 93 GC/TP0356 #### **APPROVAL IN PRINCIPLE FOR ASSESSMENT** BD 31/87 Buried concrete box type structures BD 32/88 Piled foundations BD 34/88 Assessment and Strengthening of Highways Structures on Motorways and other Trunk Roads BD 35/88 Quality Assurance Scheme for paints and similar protective coatings BD 36/88 - The Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures BD 37/88 Loads for Highway Bridges British Railways Board FORM 'AA' (BRIDGES) Group Standard Appendix: 4 Issue: 1 Revision: A Date: FEB 93 GC/TP0356 **APPROVAL IN PRINCIPLE FOR ASSESSMENT** #### **APPENDIX B** ADDITIONAL RELEVANT DOT STANDARDS PUBLISHED SINCE THE TAS DATED JUNE 1989 #### British Railways Board FORM 'AA' (BRIDGES) #### **Group Standard** Appendix: 4 Issue: 1 Revision: A Date: FEB 93 GC/TP0356 #### APPROVAL IN PRINCIPLE FOR ASSESSMENT 8.2 ADDITIONAL RELEVANT DOT STANDARDS PUBLISHED SINCE THE ABOVE EDITION OF TAS: BS 5400 - Part 1: 1988 See BD 15/92 BS 5628 - Part 1: 1992 - Unreinforced Masonry BD 15/92 General Principles - Use of BS 5400 Part 1: 1988 BD 21/97 The Assessment of Highway Bridges and Structures BD 34/94 Technical Requirements for the Assessment and Strengthening Programme for Highway Structures, Stage 1. BD 63/94 Inspection of Highway Structures 8.4 ADDITIONAL RELEVANT RAILTRACK STANDARDS: RT/CE/P/016 Assessment of Bridge Capacity Issue 1 June 1995 RT/CE/P/010 Technical Approval Procedures for Assessment of Bridges and other Structures. To be used in conjunction with BD 2/89 | British Railways Board | Group Standard | |--------------------------------------|---| | FORM 'AA' (BRIDGES) | GC/TP0356
Appendix: 4 | | | Issue: 1
Revision: A
Date: FEB 93 | | APPROVAL IN PRINCIPLE FOR ASSESSMENT | | #### APPENDIX C #### IDEALISED STRUCTURE # CHILSWORTHY BRIDGE CAL 5m 29ch 180 DEPTH OF FILL OVER TROUGHING = 250mm # IDEALISED DIAGRAM FOR ANALYSIS Structure: Chilsworthy Bridge Date: March 2004 APPENDIX B **Assessment Calculations** Project Rail Property Ltd Assessments Part of scheme Chilsworthy Bridge SUMMARY of RESULTS for STRUCTURAL ASSESSMENT Comm. No. S1897/03 Assessed by GRB Date November 2000 checked for 80 21/61 MANCH 2002 | | | | ~ | | | | T | | | T | T - | T | | | T | | |---|-------------------------|---------------|---------------------------------------|-------------------|--------------------------------|-----------------|------------|-----------------------------|------------------|--------------------|-----|---|--|--|---|--| | _ | RESULTANT | WEIGHT | RESTRICTION | | <i>+0</i> t | 1 | 40t | 40t | 40t | 40t | | | | | | | | | Reduction
Factor (K) | (For HA only) | Ref 3.20 BD21(97)
(Ra*-Sa*d)/ Sa*1 | | 1.89 | د و (| 2.2+ | 1.41 | 0.4 | 5.6 | | | | | | | | | Structural
Adequacy | 7 | Ref 3.20 BD21/97
Ra*/Sa*d+ Sa*1 | | ۲.۲ | 100 | 7.7+ | 1.3 | 3.6 | 4.4 | | | | | | | | | Live Load
Assessment | Effect | (HA or wheel)
Sa*I | | 108.7 4Nm | 11 6 11 6 | TII. & KNW | 133.5kVm | N4 5.091 | (12.44 W) | | | | | | | | | Capacity for | Assessment | Live Load
Ra*- Sa*d | | 28.32 uNn 205.68 uNn 108.7 uNn | • | 205-68 4Nm | 44.984Nm 189.024Nm 133.54Nm | 652.29WN | 638 .26 un | | | | | | | | | Dead Load | Assessment | Effects
Sa*d | į. | | 45 41 | 28 32kNm | 44.98 Whm | 24 916N 652.29WN | 38.94 KN 638.26 LN | | | | | | | | | Assessment | Resistance | Ra* | ļ. | 234 6Nm | | 254 KNm | 234 Wm | N42. Ft 8 | NAS. 469 | | | | | | | | | Position in | Span | | | MID SPAN | 1000 | FILE STAN | MID SPAN | END | 600 | | | | | | | | | LOAD CASE
(eg HA or | wheel) and | LOAD EFFECT (eg Moment) | HA SINGLE VEHICLE | HOMENT | HA TWO VEHICLES | MOMENT | HA SMGLE VENICE | HATWO VEHICLES | HA SINGLE VEHICLE | | | | | | | | | Member or | element | | MIDDLE | TROUGH | 3 70014 | TROUGH | HOMOYL
SUE | H57001 | EDGE | | | | | | | Project Comm. No. RAIL PROPERTY LTD ASSESSMENTS 51897/03 Calc. sheet No. rev Part of scheme CHILSWORTHY BRIDGE | The
Peter St | Design Consultancy ethridge, County Surveyor | Drawing ref | Calc by | Date | Check by | Date | |-------------------------|---|---------------------|----------------|----------|----------|------| | Eng., M.I
Ref | Phil., C.Eng., F.I.C.E., F.I.H.T. | Calculati | ons GRS | NOV 2000 | Out | put | | | | | | | | | | | CONTENTS | | | | | | | | GENERAL | | | <u>.</u> | | | | | 1ROUGH SECTI | ION PROPERTIES | 4 | | | | | | CHECK FOR CO | IMPACTNESS | 5 | | | | | | MOHENT OF A | 5 | | | | | | | DEAD LOADS (| MOHENT DUE TO |) | 6 | | | | | LIVE LOADS | | | 7 | | | | | L.L. MOMENT I
MIDDLE TROUG | DUE TO SINGLE
HS | VEHICLE | 10 | | | | | L.L. MOMENT
MIDDLE TROUG | DUE TO TWO UE | EHICLES | 11 | | | | | EIGE TROUG
DEAD LOADS | ids | | 13 | | | | | EDGE TROUGH | H D.L. MOMEL | JT | 14 | | | | | EDGE TROUG | H L.L. MOME | 5VT | 16 | | | | | SHEAR RESIST | FANKE OF TROX | GHS | 17 | | | | | D.L. SHEAR I | MIDDLE TROUGH | 1 s | 18 | | | | | D.L. SHEAR | EDGE TROUGH | 2.5 | 18 | | | | | L.L. SHEAR | MIDDLE TRONG | 5HS | 19 | | | | | L.L. SHEAR | EDGE TROUG | HS. | . 9 | | | | | CHECK ON 1 | RIV€TS | | 20 | | | | | | | | | | | | | | | | | | | The Design Consultancy Comm. No. Project 51897/03 MAIL PROPERTY LTD ASSESSMENTS Calc. sheet No. rev Part of scheme CHICSWORTHY BRIDGE Calc by | Peter Steth | esign Consultancy
nridge, County Surveyor
il., C.Eng., F.I.C.E., F.I.H.T. | Drawing ref | Calc by
⊝≀≀B | Date | Check by | Date | |-------------|---|---------------|-----------------|---------------|----------|------| | Ref | , | Calculati | ons | | Out | put | | | | | | | | | | | GENERAL | | | | | | | | THE STRUCT | URE IS A SH | NGCE STAN GR | - 06 <i>6</i> | | | | | CONSISTING | OF FACILIEATE | D STEEL PARA | PET | | | | | WPRIGHTS PR | 15 THER 1 | NFILL THE PA | RAPETS | | | | | ARE CONNEC | 763 40 20146 | STUDINAL TRO | ughligh. | | | | | the usuiths | ITS ARE COM | ustructed of | SOUNIE | | | | i | ROUGH FACED | random itub | BLE GRANUTE, T | ₩£ 147€ | | | | | OF THE STRU | ACTURE 15 11 | NUOWN, THER | E ARE | | | | Ì | CURRENTLY | NO LIMITATIO | NS ON NORMAL | HIGHWAY | | | | | SUG BUNGALL | R THE STAR | TURE . DIMENSI | ONS OF | | | | | THE STRUCT | ure were a | STAINED DURI | NG THE | | | | | SITE INSPECT | ON AND COR | RELATE WELL V | VITH | | | | | THE RECORD | DRAWING SO | applied by RA | 16 | | | | | PROPERTY 1 | 75. | ŀ | | | | | | | | 1 | Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY BRIDGE Calc. sheet No. rev | Project The Design Consultancy Peter Stethridge, County Surveyor B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. Project ALL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY BRIDGE Calc. sheet No. rev 1 3 1 Drawing ref Calc by CRR NOV 2000 Comm. No. S1897 /03 Calc. sheet No. rev 1 3 1 | B.Eng., M.Phil. | dge, County Surveyor
, C.Eng., F.I.C.E., F.I.H.T. | Drawing 161 | GRB | NOV 2000 | Check by | | |-----------------|--|--------------|-----------------|---------------------|-------------------|----------| | Ref | | Calculation | ons | | Out | put | | | -ROUGH SE | CT 10115 | | | | | | : | | SPHALT CONC | RETE. DEPTH | TROUGHS | | | | | 250 mm | | , | | | | | | EFFECTIVE | SFAN OF TROU | GHS | | | | | | LENGTH OF | TROUGHS = | 18'3" > 5 | -563 mm | | | | | SKEW
SPAN | = 4700 mn | | | | | | 3D21/97
16.5 | TROUGHS | CEAR OUTO | GRANITE SO | | | | | | 4×300 = | | - | | | | | | EFFECTIVE S | PAN = 4700 | +2x 75 x1 | 1 3 | | | | | | = 4750 | nm | | | | | | | | | | EFFECT | IUE SPAN | | | | | | | OF TROU
4750 V | GUS | | cl 6.10 | CARRIAGEWA | AY WIDTH | 6020 mm F
TO | PAR APET
PARAPET | | | | | : Two | LANES | | | | | | | UDL REPI | lesented by | TNU STRIP | LOADS | | | | | hel rem | ESENTED BY | TWO POINT | CUADS. | | | | | | | | | | | | | | | | | 1 | The Design Consultancy Peter Stethnidge, County Surveyor B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. Ref Project Comm. No. SIB47/03 Part of scheme CHILSWORTHY BRIDGE Calc. sheet No. rev 1 4 1 Drawing ref Calc by CRB Page 2000 Comm. No. SIB47/03 Calc. sheet No. rev 1 4 1 **Output** | CHECK | SECTION | PROPERTIES | OF | TROUGH | SECTION | |-------|---------|------------|----|--------|---------| Calculations TROUGH THICKNESS = $\frac{7}{6}$ " \Rightarrow 11 mm SPLICE PLATE ON TOP OF TROUGHS $\frac{7}{4}$ " \times $\frac{7}{6}$ " \times LENGTH, (178 \times 11). ASSUMING 1:2 SLOPE TO TROUGH. $$S = V(150^{\circ} + 100^{\circ})$$ = 335. mm AREA = $$(178 \times 11) + 2(131.5 \times 11) + 2(335 \times 11) + (250 \times 11)$$ OF TROUGH SECTION = $1958 + 2893 + 7370 + 2750$ = 14971 mm² $A = -(128 \times 11) \times 3055 \times 11 \times 1045 \times 11 \times 1045 \times 11$ $$A_{\frac{1}{4}} = (178 \times 11 \times 305.5) + 2(131.5 \times 11 \times 294.5) + 2(335 \times 11 \times 150) + (250 \times 11 \times 5.5)$$ $$= 2570783 \qquad \overline{q} = 172$$ The Design Consultancy **Project** RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY BILLDGE Calc by Calc. sheet No. rev Comm. No. 51897/03 Drawing ref Date Check by Date | B.Eng., M.Phil. | dge, County Surveyor
, C.Eng., F.I.C.E., F.I.H.T. | Diawing (e) | GAB | NOV 2000 | Check by | Date | |---------------------------------------|--|---|-------------------------------|--------------|----------|------| | Ref | | Calculation | S | | Out | put | | | • | ×11 × 133.5)+2
8 × 11×22)+(1 | | | | | | | = 1.091 | | | , | | | | BD 56/96
La.3.7.2 | CHECK FOR | COMPACTNESS | | | | | | | w€8S | | | | | | | | 28 tn | 355
Ty ~ | | | | | | | 28 × 11 | $\sqrt{\frac{355}{230}} = 382.$ | 6 > (300 - g = | (43) | | | | (9.3.7.3.2 | FLANGES | | | | : | | | | 24 tn | ď | | | | | | | 24 × 11 | $\sqrt{\frac{355}{230}} = 328$ | > 131.5 | | | | | 24.7514 | .'. PLASTI | C MODULAS CAN
(COMPACT) | v BE used. | | : | | | PARTIAL SAFETY FACTORS BD21/97 TABLES | 10 = 54.21
8m 87 | $\frac{\partial \mathcal{L}}{\partial x} = \frac{230 \times 1.00}{1.2 \times 1.}$ | $\frac{9\times10^6}{1} = 190$ | O kNm/trough | 170 = 23 | 4 KN | | 3.1,3.2 | 0.813 | × 190 = 234 | Project Comm. No. RAIL PROPERTY LTD ASSESSMENTS S1897 (03 Part of scheme Calc. sheet No. rev CALCEMORTHY BRIDGE 1 6 1 Drawing ref Calc by Date Check by Date | The Design Consultance Dead Calc by Dete Proving ref Calc by GR Dete | COUNTY COUNCIL | 02/45 | ENDRTHY BRIDG | E | 16 | 1 | |--|--|--|---|----------------------|---------------------------------|-----------------------| | BERG MPHIL, CERE, FILET GRO 100 1000 | | dge. County Surveyor | | Check by | Date | | | DEAD COADS SURFACING. 0.1 Y 24 × 0.813 × 1.35 = 3.415 hN/m AREA WITHIN TRUBEN CONCRETE FILL [(0.266 × 0.16) + (0.135 × 0.16)) + RESINGEN ATTEM OF SMARKING A TAP OF MEMBER (YF) ((0.25 - 0.1) × 0.813) [24 × 1.15] = 5.678 hN/m TROUGH SELF AREA × 78.5 × 1.05 WEIGHT (1495 × 10° × 78.5 × 1.05 = 0.947 hN/m TOTAL D.L. 3.415 5.671 0.947 10.04 hN/m DEAD COAD MOMENT AT ILLTIMATE FROM AVAILABLE MOMENT OF RESISTANCE FOR LIVE LOADING PERTROUGH WIOTH STAPOF 813mm TOTAL 28.32 = 205.69 hNm PROMERT OF RESISTANCE FOR RESISTANCE FOR LIVE LOADING PERTROUGH WIOTH STAPOF 813mm | B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. | | GRB | 1000 2000 | | • | | SURFACING. 0.1 Y 24 x 0.813 x 1.75 = 3.415 kN/m AREA WITH TADWAY CONCRETE FILL [(0.266 x 0.16) + (0.136 x 0.165) + REPAIR OF SOTION OF SHARKWAY THE FAMORY (XF) ((0.25 - 0.1) x 0.813) 24 x 1.15 = 5.678 kN/m TROUGH SELF AREA x 78.5 x 1.05 WEIGHT 11495 x 10 x 78.5 x 1.05 TOTAL D.L. 3.415 5.679 0.947 10.04 kN/m DEAD COAD MOMENT AT ILLTIMATE = 10.04 x 4.75 => 29.32 kNm PARA COAD AVAILABLE MOMENT OF RESISTANCE FOR LIVE LOADING PERTROUGH WIOTH STAIPOF 813 mm 700 MENT OF RESISTANCE ARREA x 1.75 & 69 kNm TOTAL D.L. 3.415 5.679 0.947 10.04 x 4.75 => 29.32 kNm TOMENT OF RESISTANCE ARREA X 1.75 & 69 kNm TOMENT OF RESISTANCE ARREA X 1.75 & 69 kNm | | Calculati | ons | | Out | put | | FROM AGÉ 3 = 10.04 × 4.75 => 28.32 kNm ROMENT 28.32 kNm AVAILABLE MOMENT OF MESISTANCE FOR LIVE LOADING PERTRONALI WIOTH STRIPOF 813mm MOMENT OF MESISTANCE TOMENT OF MESISTANCE AVAILABLE FOR LIVE LOADING PERTRONALI WIOTH STRIPOF 813mm MOMENT OF MESISTANCE AVAILABLE FOR LIVE LOADS | SURFACING. CONCRETE FILL TROUGH SELL WEIGHT TOTAL D.L. | 0.1 × 24 × 0 AREA WITH ([(0.266 × 0.) 3 ETWEEN BOTTOM OF ((0.25 - 0.) = 5.678 UN 495 × 10° × 78 3.415 5.678 0.947 10.04 | .813 × 1.75 = IN TROUGH .18)+(0.135 × 0. SMAFACING & TOP OF THEM) × 0.813)] 24 1/m (YFL) 78.5 × 1.05 .5 × 1.05 = 0.99 | 266) + un(8f1) x1.15 | | | | LOADING PERTROUGH WIDTH STRIPOF 813mm TOMENT OF RESISTANCE AVAILABLE FOR LIVE LOADS | | | | 2 KNM | MOMEN | 7 | | 734 - 28.32 = 205.68 kNm RESISTANCE AVAILABLE FOR | AVAILABLE P | noment of he | SISTANCE FOR | Live | | | | 734 - 28.32 = 205.68 kNm $RESISTANCE$ $AVAILABLE FOR$ $LIVE LOADS$ | LOADING PER | ETROUGH WID | OTH STRIPOF 8 | 13 mm | | | | | 234 - | 28.32 = 2 <i>0</i> 5 | T.68 KNm | | RESISTAI
AVAILAL
LIVE LOI | UCE
SLE FOR
405 | The Design Consultancy Peter Stethridge, County Surveyor 3.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. 40/3329 Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY BRIDGE Check by Date Comm. No. 5/897 / 03 Calc. sheet No. rev / 7 / | Ref | | Calculation | ons | | Out | put | |--|-----------------------------------|--------------|--------------------|--|-----|-----| | 502:/97
CL 6.10 | LIVE LOAD | 1.8 m | N = 12 x 336 (1/2) | | | | | LEAR
SPAN
FROM
146E 3 | HEL
(POINT LUAD)
VV = 1/2 x | 336 (1/4.75) | 0.67
=> 59.1 | 5 hN/m | | | | 250mm
DETAINED
FROM FRIAL
PIT | | 700 | 1500 | 250mm | | | | BD21/97
Cl 6.14
CASE A. | Lt = 2 x 250 ALt = 4 x 80 | o ⇒ 3200 | FROM | RLAP OF LOADS
M TWO VEHICLES
- 700 = 100mm | | | Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY BRIDGE Calc. sheet No. rev 1 8 1 Drawing ref Calc by Date Check by Date | | The Design Consultancy Peter Stethridge, County Surveyor Peter Stethridge, County Surveyor | | | Check by | 8 /
Date | | |--------------
--|--------------|---------------------------------------|-----------------------------------|-------------|--------| | Peter Stethr | idge, County Surveyor
., C.Eng., F.I.C.E., F.I.H.T. | Diawing let | GRZ | NOV 2000 | Check by | Date | | Ref | | Calculation | ons | | Out | put | | | | | · · · · · · · · · · · · · · · · · · · | - | | | | WETH OF | | | | | | | | - WAY | W SPREAD | OVER 3.2 m | ACROSS CARR | AGEWAY. | | | | 6020mm | W ALSO DIS | TRIBUTED BY | 0.8 m ALON | 16 DECH | | | | 15.25 | | | | G = GG , C . | | | | 7,25 | $AF = \overline{a}/25$ | ⇒ 1.46 | | | | | | | 14DV 59 15 | 40 = 1 | 161 10 | 411 | UNFACT | ORED | | | 1,46 | _ = 10.5 / | 1EL, <u>60</u> = | | UDL = 40 | .5 KN/ | | D21/97 | | | | | KEL = 4 | 1.1 KN | | iz 6.2 B | SPREAD OF LO | AD AT UNSTIP | FENED EDGE O | FTROUGHS | İ | W | W Water and a second se | | | | | | | : | | | | | | | | | \ | | | | | | | | \ | 1 813m | m ; | | | | | | | 7 | }- | | | | | | | 4 4 | 06 | 7 | 4 2 | | | | | | | | | | | | | ĺ | | | APPAON | MATE DISTANCE | | | | | + 2 Lt | = 1600 / 6 | 35mm From | CENTRE OF | | | | | | • | TROUG | SH TO PARAPET. | | | | | | | (9"+2 | OF TROUGH). | | | | 1 | | | | | 1 | | The Design Consultancy Peter Stethridge, County Surveyor B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. Ref Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY BRIDGE Calc. sheet No. rev CHILSWORTHY BRIDGE Check by CARS NOV 2000 Comm. No. S1897 / 03 Calc. sheet No. rev CHILSWORTHY BRIDGE CARS NOV 2000 Check by Date Output | FOR MAIN BODY OF BRIDGE, WITH DISTRIBUTION | |--| | OVER 3.2 m = GHEST INTESITY OF LOAD DUE | | TO A SINGLE VEHICLE OVER ONE TROUGH | | 1.813 m == 1DE 15: | **Calculations** UDC = 40.5 x 1.5 => 60.75 hN/m $$y = \frac{3200/2 - 813/2}{3200/2}$$ $x = > 0.75 x$ FROM 60.75 kN/m TO ESTABLISH &: 3.2/4 oc = 60.75/2 LOAD TAKEN BY SHADED AREA = 2C+4 x 0 813 $$NEL$$, $41.1 \times 1.5 = 61.65$ $y = 0.75x$, ∞ ; $3.2/2 \approx = 61.65$ $$3c = 38.53$$... $y = 28.9$ Comm. No. Project RAIL PROPERTY LTD ASSESSMENTS 51897/03 | one and all onen hag oil | TOPICE TOUT | بهداده الناسي | | 21317 | رري | | |--|--|-------------------------------|---------------------------|-----------|-------------|--| | CORNWALL COUNTY COUNCIL | Part of scheme | CSWORTHY BRIDGE Calc by Date | | Calc. she | eet No. rev | | | The Design Consultancy | Drawing ref | | 1 | Check by | Date | | | Peter Stethnidge, County Surveyor
B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. | | GRB | NOV 2000 | | | | | Ref | Calculat | ions | | Out | put | | | | | | | | | | | LOAD TAX | IEN BY SHADE. | D AREA = OC+ | 4 × 0.813 | | | | | | | <i>-</i> | | | | | | | = 27.4 | F KN. | | | | | | LIVE LOAS | | | | | | | | | 27.4 KN | 27.01 h | iN/m | | | | | | <u> </u> | | | | | | | AN. | 10.50 | 4 | | | | | | GE 3 | 4852 mm | | | | | | | noneut A | T NID SPAN. | | | | | | | <u>n</u> | 12 + WL | | | | | | | 27. : | $\frac{2 \times 4.75^{2}}{8} + \frac{23}{8}$ | 7.4 × 4.75
4 | = 108.7 KNm | | | | | GE 6 MOMENT C | DE ILESISTANCE | AVAILABLE FOR | LIVE LOADS | | | | | = 205.68 | JeNm. | | | | | | | 205.68 | 1>108.7 | : TROUGHS C | | | | | | | | , | FOR SINGLE
IN BENDING. | | | | | /// | Filom Two | 10 Jan 20 - 10 15 | | | | | | LOAD | FROM TWO V | C-1000 70 110 | CHECKED | The Design Consultancy Peter Stethridge, County Surveyor B.Eng., M.Phil., C.Eng., F.I.C.E., F.I.H.T. Ref Comm. No. **Project** RAIL PROPERTY LTD ASSESSMENTS 51897/03 CHILSWORTHY BRIDGE Calc by Calc. sheet No. rev 1 11 Drawing ref GRB Date NOV 2000 Check by Date Output Calculations 2500 mm OVERLAP: 2500/2 PER LOAD $$\eta = \frac{12092}{31092} - 350$$ >c => 0.78 >c PAGE 9. UDL = 60.75 KN/m $$x = 37.97$$: $y = 29.61$ LUAD TAKEN BY SHADED AREA = 2+4 (0.35x2) = 23.65 hN/m. HOWEVER TROUGH IS 813mm WIDE SO: $$\frac{406.5}{350} \times 23.65 = 27.47 \, hN/m$$ LOAD PER TRONGH WIDTH. The Design Consultancy **Project** RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSMORTHY 51897/03 Comm. No. Calc. sheet No. rev 1 12 | Peter Steth | sign Consultancy
ridge, County Surveyor
I., C.Eng., F.I.C.E., F.I.H.T. | Drawing ref | Calc by | Nov 2000 | Check by | Date | |--|--|----------------------------------|----------------------------------|---------------|----------|------| | Ref | Ref Calculations | | | | | | | 1=0.78x
FROM
PAGE 11
C FROM
PAGE 9 | ٧ | 5 nN
.78 x , 2
. y = 30.05 | | | | | | | | J | AREA = DC+4 | (0.35×2) | | | | | AS THE U | DC AND KEC. | ABOVE ARE THE | E SAME | : | | | | FOR BOTH V
AS FOLLOWS | | SINED LOADS | ARE | | | | | | | uN/m = 5 | 4.9 | | | | | KEL = | 2 × 24.0 | 4N = 48 | 1.0 | | | | | 4 | 48.6
4750 ma | 54. | ጎ | | | | | MOMENT GT | | | | | | | | 54.9 x | 4.75° + 48. | 0 × 4.75 - | = 211.8 hNm | | | | PAGE 6 | 211.8 | 205.64 | TROUGHS CENTRE IMPEDIATI CHECK K | NOT
ELY OK | | | The Design Consultancy Project Comm. No. 51897/03 RAIL PROPERTY LTD ASSESSMENTS Part of scheme Calc. sheet No. rev CHILSWORTHY Calc by / / 3 / Check by Date | | esign Consultancy
nridge, County Surveyor | Drawing ref | Calc by | Date | Check by | Date | |---------------|--|-----------------------|--------------------------|------------------------------|----------|------| | B.Eng., M.Phi | i., C.Eng., F.I.C.E., F.I.H.T. | | GRB | NOV 2000 | | | | Ref | | Calculati | lons | | Out | put | | EE P.8 | EDGE TROU | 1645 | W the same of the | | | | | | ADDITIONAL | DEAD COAD DO | ME TO PARAPET | - | | | | | PARAPET CON | SISTS OF STEE | EC STANDARDS | WITH | | | | | TIMBER INFI | LL BOARDS | er:) TIMBER | TOP RAIL | | | | | VOLUME OF | TIMBER: | | | | | | | 4 6" x | 3/4" x (4 x 4' | ı") | | | | | | 1.372 m x | 0.019 x 4.75 | = 0.124 | 3
:n | | | | | VOLUME OF | STEEL STANDAR | DS : | | | | | | BOTTOM PLA | TE 1'3" x 7 | 6" x Le ⇒ | 0.02 m3 | | | | | SMALL ANGLE | 4'2" x 4'5' | xxxe => | 0.013 m3 | | | | | VERTICAL PLA | ATE 10" x 38"; | ×Le > | 0.011 m ³ | | | | | VERTICAL UP. | STAND 5" × 3" × | 13"+(1")x | $3N'. \Rightarrow 0.004 m^3$ | | | | | | | TOTAL (| 0.048 m3 | | | | | SO WEIGHT | OF TIMBER: | 0.124 × 1250 | kg/m² | | | | | | = | = 155 kg = | 15.8 KN | | | | | 16.5 TOTAL | | 70 15.8/4.7 | | | | | | WEIGHT OF | STEEL: 0.04 | 18 × 77,22 hN | $/m^3$ | | | | | | = 3.5 | H KN | | | | | | OR 3 | · 7 (= 0. | 78 KN/m | 40/3329 Project RAIL PROPERTY LTD ASSESSMENTS S1897 / 03 Part of scheme CHILSWORTHY Drawing ref Calc by Comm. No. S1897 / 03 Calc. sheet No. rev | <u> </u> | UNTY COUNCIL | CH. | ILSWORTHY | | 1 1 | + 1 | |--------------|--|--|---|---------------------------------|--------------------------|--------| | Peter Ster | Design Consultancy
thridge, County Surveyor
hil., C.Eng., F.I.C.E., F.I.H.T. | Drawing ref | Calc by | Date Nov 2000 | Check by | Date | | Ref | nii., C.Eng., E.I.C.E., E.I.H.T. | Calculati | | 1,000 2000 | Out | nut | | P. 6
P. 3 | O.216 X SURFACING
O.216 X O.216 X TOTAL FOD EDGE TROL 3.33 SO MOMENT = (10.04) USING DIST IN FIGURE ON PAGE 8 EFFECT DUI | (0.25-0.1) (0.15 × 24 : 0.15 × 24 × ITTOWAL DEAD (GH + 0.78 + 1. ON EDGE BEA + 5.91) × 4.: 8 TRIBUTION ME 6.28 IN BD OF THESE CALL E TO THE UNSERNINE | $ \begin{array}{c} \times 1.15 = 0 \\ 1.75 = 0 \\ \hline 70TAC & 1 \\ \hline COAD ON \\ 8 = 5.91 \\ \hline M DOME TO D \\ \hline MS $ | .907 4N/m801 4N/m. 4N/mC98 4Nm. | EDSE
D. C.
= 44.98 | TROUGH | Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY C | The Decision Connection | | ORNWALL | Part of scheme | LSWORTHY | | Calc. she | | |---|----------|--|-------------------------|--|---------------|-------------|------| | $Q = \frac{1600 - 406}{1600} \times = 7.75 \times \frac{1}{1600}$ $Z = \frac{1600 - 635}{1600} \times = 0.60 \times \frac{1}{1600}$ $2 = \frac{1600 - 635}{1600} \times = 0.60 \times \frac{1}{1600}$ $2 = \frac{1600 - 635}{1600} \times = 40.5 \times 1.5$ $= 60.95 \text{ kN/m}$ $RACE $ | Peter St | tethridge, County Surveyor | | Calc by | | | Date | | $\frac{2}{1600} = \frac{155}{1603} \propto \Rightarrow 0.60 \times .$ $\frac{1600}{1603} \times \frac{150}{1603} \frac{150}{$ | Ref | | Calculati | ons | | Out | put | | 'ADC' LOAD TO BE DISPERSED = 40.5×1.5 \$ 60.75 \text{ \text{ AN } / m} AMER ANDGIL CLAVE = 60.75 The and and another | | | | | | | | | $= 60.75 \text{ µN/m}$ AMER ANDERL CARVE = 60.75 $\stackrel{?}{NR}. \frac{1.6x}{2} + \frac{x+2}{2} \times 0.635 = 60.75$ $SINCE 2 = 0.6x, \frac{1.6x}{2} + \frac{x+0.6x}{2} \times 0.515 = 60.75$ $1.308 \times = 60.75$ $x = 46.45$ $\therefore y = 34.83$ $2 = 27.87$ LOAD ON TROUGH = $\begin{bmatrix} x+y & 0.406 \\ 2 & 1 \end{bmatrix} \times 2 = 33.00 \text{ kN/m}$ KEL, $411 \times 1.5 = 61.65 \text{ LN}$ AREA LUDGER CURVE = 61.65 $\stackrel{?}{1.6x} + \frac{x+2}{2} \times 0.625 = 61.65$ $SINCE 2 = 0.6x, \frac{1.6x}{2} + \frac{x+0.6x}{2} \times 0.635 = 61.65$ $1.308 \times = 61.65$ | | | 1600 | Y | ; | | | | i.e. $\frac{1.6 \times 1}{2} + \frac{x+2}{2} \times 0.635 = 60.75$ SINCE $2 = 0.6 \times 1.6 \times 1.6 \times 1.2 \times 0.535 = 60.75$ 1.308 = $= 60.75$ $x = 46.45$ i. $y = 34.83$ $x = 27.87$ LOAD ON TROUGH = $\left[\frac{x+y}{2} + 0.406\right] \times 2 = 33.0 \text{ kN/m}$ KEL, $411 \times 1.5 = 61.65 \text{ kN}$ AREA UNDER CURVE = 61.65 $1.308 \times 1.6 \times 1.65 \times 1.65$ SINCE $2 = 0.6 \times 1.6 \times 1.6 \times 1.65 \times 1.65$ $1.308 \times 1.6 \times 1.65 \times 1.65 \times 1.65$ | | THE CORD TO |) BE DISPERSED | | | | | | SINCE $2 = 0.6 \times 1.6 \times 1.6 \times 1.2 \times 1.308 1.$ | | ANEA UNDERL | CURVE = 60 | 0.75 | | | | | 1.308 = $c = 60.75$
x = 46.45
x = 27.87
LOAD ON TROUGH = $\left[\frac{x+y}{2} \times 0.406\right] \times 2 = 33.0 \text{ kN/m}$
KEL, $4(.1 \times 1.5) = 61.65 \text{ kN}$
AREA LUNDER CURVE = 61.65
$x^2 = \frac{1.6 \times 4}{2} + \frac{2c+2}{2} \times 0.625 = 61.65$
SINCE $z = 0.6 \times \frac{1.6 \times 4 \times 40.6 \times 20.635}{2} = 61.65$
1.308 $x = 6^{1}.65$ | | ie. <u>1.6 sc</u> 2 | + <u>x+2</u> x 0 | 0.635 = 60 · | 75 | | | | $x = 46.45$ $y = 34.83$ $z = 27.87$ $LOAD ON TRONGH = \left[\frac{x+y}{2} \times 0.406\right] \times 2 = 33.0 \text{ kN/m}$ $KEL, 41.1 \times 1.5 = 61.65 \text{ kN}$ $AREA UNDER CURVE = 61.65$ $ie \frac{1.6x}{2} + \frac{3c+7}{2} \times 0.625 = 61.65$ $SINCE z = 0.6x, \frac{1.6x}{2} + \frac{x+0.6x}{2} \times 0.635 = 61.65$ $1.308 x = 61.65$ | | SINCE 2 = | 0.6 x, 1.6x | $\frac{2}{2} + \frac{\infty + 0.6 \times}{2} \times 0$ | 0.335 = 60.75 | | | | $Z = 27.87$ $LOAD ON TROUGH = \left[\frac{x+q}{2} \times 0.406\right] \times 2 = 33.0 \text{ hN/m}$ $KEL, 41.1 \times 1.5 = 61.65 \text{ hN}$ $AREA UNDER CURVE = 61.65$ $ie \frac{1.6 \times + 2c+2}{2} \times 0.625 = 61.65$ $SINCE Z = 0.62c, \frac{1.6 \times + x+0.6 \times 0.635}{2} = 61.65$ $1.308 \times = 61.65$ | | | 1.30 | 8 =c = 60.75 | | | | | $Z = 27.87$ $LOAD ON TROUGH = \left[\frac{x+y}{2} \times 0.406\right] \times 2 = 33.0 \text{ kN/m}$ $KEL, 41.1 \times 1.5 = 61.65 \text{ LN}$ $AREA UNDER CURVE = 61.65$ $ie \frac{1.6 \times 1}{2} \times \frac{2c+2}{2} \times 0.625 = 61.65$ $SINCE Z = 0.62c, \frac{1.6 \times 1}{2} \times \frac{x+0.6 \times 0.635}{2} = 61.65$ $1.308 \times = 61.65$ | | y = 34 | . 83 | a = 46.45 | - | | | | KEL, $41.1 \times 1.5 = 61.65 \text{ LAN}$ AREA LUNDER CURVE = 61.65 $ie \frac{1.6 \times 1}{2} + \frac{9c+2}{2} = 61.65$ SINCE $2 = 0.69c$, $\frac{1.6 \times 1}{2} + \frac{1.6 \times 1}{2} = 61.65$ $1.30\% \times = 61.65$ | | · · | | | | | | | AREA LUNDER CURVE = 61.65 $10.6 \times 10.6 \times 10.62 \times 10.63 1$ | | | L | - | O KN/m | | | | $ie \frac{1.6 x}{2} + \frac{9c+2}{2}, 0.635 = 61.65$ Since $z = 0.6 x$, $\frac{1.6 x}{2} + \frac{x+0.6 x}{2} \times 0.635 = 61.65$ $1.308 x = 61.65$ | | | | | | | | | SINCE $z = 0.6 \infty$, $\frac{1.6 \times + \times + 0.6 \times \times 0.635}{2} = 61.65$ $1.308 \times = 61.65$ | : | | | | | | | | 1.308 = 61.65 | | $\int_{0}^{\infty} \frac{1.6 \infty}{2}$ | 2 , 0.6 | 35 = 61.69 | | | | | | | SINCE Z = | $0.60c, \frac{1.6x}{2}$ | 2 x +0.6 x x 6 | 0.635 = 61.65 | | | | $\propto = 47.12$ | | | 1.30% | x = 61.65 | | | | | | | | • | x = 47.12 | | | | Project Comm. No. RAIL PROPERTY LTD ASSESSMENTS 51897/03 Part of scheme CHILSWORTHY 1 16 1 | CORNWALL COUNTY COUNCIL The Design Consultancy Peter Stethnidge, County Surveyor | | Part of scheme | HILSWORTHY | | Calc. sheet No. rev | | | |---|-------------------------------|----------------|--------------------------------|--------------|---------------------|--------------------------|--| | | | Drawing ref | Check by Date | | | | | | Ref | ., C.Eng., F.I.C.E., F.I.H.T. | Calculat | ions | 199 1000 | Out | tput | | | 167
FROM P15 | .', 2 = 28 | 7.28 , y= | 35.35 | | | | | | | LOPD ON | TROUGH = [| ×+4 × 0 406 | 2 = 33.49 KN | 1 | | | | | LIVE LOAD | MOMENT | | | | | | | | | 33.2 | 19 33 | 24 | | | | | | | | , | | | | | | | - | 4.75 | - | | - | | | | | noneut at 1 | MID SPAN | | | | | | | | WL2 + | WL
4 | | | | | | | | 37.24 x 2 | 1.75 + 31.46 | $\frac{9 \times 4.75}{4} = 13$ | 3.5 KNm. | | | | | | 50 D.L. | Mo + L.L. | Mo | | | = 44.99 kN
= 133.5 kN | | | PAGE 14 | 44 | .98 + 133.5 | = 178.48 | 4Nm | | | | | AGE 6 | MOMENT OF | RESISTANCE 2 | 34 4Nm > 1 | 78.48 hNn | EDGE T | | | | | | | | | 1 | Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme SYMES OF LOGE Drawing ref
Comm. No. \$1897/03 Calc. sheet No. rev | 17 | | | Design Consultancy | · ···· | Colo bu | T n-4- | | * / | |------------------------|--|---------------------------|---|----------------------|-------------|----------------| | Peter Ster | thridge, County Surveyor | Drawing ref | Calc by | Date NOV 2000 | Check by | Date | | Ref | hil., C.Eng., F.I.C.E., F.I.H.T. | Calculati | | | Out | put | | | | | | | | | | 056/95
(9.9.2 | CHEAD DEC. | et allee se a | enania (m. 11. menare) | | | | | 1.1.2 | SHEAK KEST | STANCE OF | TROUGH SECTION | | | | | | 1/ T+ | (| | | | | | | VD = [| $\frac{\sqrt{dn-hn}}{8m}$ | \mathcal{L}_{λ} | | | | | | tw=11 mm | | | | | | | | | | | | | | | | dw = 294 m | - কণ্ | | | | | | | Lak = 0 | | | | | | | | $\lambda = \frac{dwe}{tw} \sqrt{\frac{\sigma_0}{355}}$ | _ due = | 12"-76"x3 => | 271 mm | | | | | tw √ 355 | , | | | | | | | $\lambda = \frac{271}{11} \sqrt{\frac{230}{355}}$ | -
-> 19.8 | 23 | | | | | | · | | | | | | | EFFECTIVE
SPAN P. 3 | \$ = a | p = 4750 | <i>□</i> => 17.5 | _ | | | | ,,,,,, | | | | | | | | | $mf_{\sim} = \frac{\sigma_{\eta}}{2\sigma}$ | | | | | | | | 2 | Ju sine cu | | | | | | | bfe: 10 tf | 355 , 10 | x11 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | _ 136.7 | | | | | \ | Topf | $\times 11\sqrt{\frac{355}{230}}$ | • | : | | | | | | | | | | | | $OR \frac{271}{2} =$ | 135.5 WH | CH EVER IS THE | E LESSER | | | | | - | ne 1 | 35.5 | | | | | | $mf_{\rm w} = 230$ | 0 × 135.5 × 11 | -> 0.0 |) { | | | | | 2 × 2 | 30 × 2712 × 11 | => 0.0 | | | | | İ | | | | | | | | | USE FIGU | LRE 13. GI | ves | | | | | | | | | | | | | | $\frac{\mathcal{T}_{I}}{\mathcal{T}_{I}}$ | = 1.02 | | | | | | | 2 4 | • | | | | | | | | | | | | | | | | | | | Ī | | Project RAIL PROPERTY LTD ASSESSMENTS Part of scheme CHILSWORTHY Drawing ref Comm. No. S1997 / 03 Calc. sheet No. rev / 18 / Check by Date | <u>C</u> | OUNTY COUNCIL | C | HILSWORTHY | | 1 1 | 8 1 | |------------------|---|------------------------------------|----------------|----------|------------|----------| | Peter St | Design Consultancy ethridge, County Surveyor | Drawing ref | Calc by | Date | Check by | Date | | B.Eng., M.I | Phil., C.Eng., F.I.C.E., F.I.H.T. | 0-1-1-1 | GRB | NOV 2000 | | <u> </u> | | Ref | | Calculati | ons
 | | Out | put | | | | | | **** | | | | | Zy = <u>oy</u> ~ | , Ty = | 230 = 132 | . 8 | | | | | | | | | | | | | : 71 = 1. | 02 × 135.5 | ⇒ 138.2 | | : | | | | | / | | | | | | | $SOV_0 = 1$ | 1(294-0)
1.2 × 1.1 | × 138.2 | | | | | | V | 338.6 HN per W | 151 TOTAL - 12 | 2011 | $V_0 = 67$ | 20.4 | | | V 2 . | so. o kit per | CS, 101AC = 61 | T. Z W O | V 5 = 07 | T. CKN | | | SHEAR DUE T | O DEAD LOAD |) | | | | | | MIDDLE OF DE | CK AT ABUTHE | $\sim \tau$ | | | | | | | | | | | | | P.6 | | | 10.49KN1 | m. | | | | | 4 | | 4 | | | | | | R _A | 4750 mm | - Ra | | | | | | | | · | | | | | | $R_{\rho} = R_{\theta} = \frac{\omega L}{2}$ | ⇒ 24.° | 91 HN. | | | | | : | | | | | | | | | EDGE TROUGH | 1 AT ABUTHER | <u>r</u> | | | | |) 1 4 | | | (10.487+5 | 91) KN/m | | | | | _ | | | ••• | | | | | 4 | | | | | | | | RA | | 128 | | | | | | , , , | | | | | | | | 0 - | , | al d | | | | | | KA = KO = V | $\frac{\vee L}{2}$ \Rightarrow 3 | 8.94 hN | 1 | | Project RAIL PROPERTY LTD ASSESSMENT Part of scheme CHILSWORTHY Drawing ref Calc by Comm. No. 51897 / 03 Calc. sheet No. rev 1 19 1 Check by Date | COUNTY COUNCIL | | C | 1 19 1 | | | | |----------------|---|---|--------------------|----------------------|--|-----------| | Peter Stethn | sign Consultancy
idge, County Surveyor
, C.Eng., F.I.C.E., F.I.H.T. | Drawing ref | Calc by | Date NOV 2000 | Check by | Date | | Ref | , O.Dig., Fal.O.L., Fal.II. I. | Calculati | | | Out | put | | | | E TO LIVE LOATO | | | | | | . 12 | RA | +8.0 km | 47.3 | eN/m | | | | | RA = RB | $=\frac{\omega L}{2}$ | 47.3 × 4.75 | = 112.3 KN. | | | | | TOTAL LIVE | LOAD SHEAR A | T END OF TROU | GH | | | | | 112.3 - | · 48.0 = 160. | 3 KN | | | | | | | HEAR IN CENTA
1.3 + 24.91 = 18
0 | 5.21 hN < 33 | 88.6 HN | CENTRE
TROUGHS
FOR SHE
185.21 < | OK
FAR | | 16, P1 8 | | SHEAR AT | L.L
37.24 + (10 | D.L | | | | | | <u>V</u> | <u> </u> | | LC SHE
78.95+
= 112.0 | 33.49 | | (| L) RA = R2 = | $\frac{\omega L}{2} \Rightarrow \frac{33.7}{2}$ | 24 × 4.75 = | - 78, 95 an | | | | | | 5.91) × 4.75 | | | EDGE S | | | | TOTAL: 33.49 | + 78.95 +38.9 | 4 = 151.38 < | :338.6 hN | | | | | | : OK. | | | | | The Design Consultancy Comm. No. **Project** RAIL PROPERTY LTD ASSESSMENTS 51897/03 Calc. sheet No. rev Part of scheme Drawing ref Calc by 1 20 1 Check by Date | Ref Calculations Output CHECK ON RIVETS SMEAN RESISTANCE OF HIVETS $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | Peter Stethri | ign Consultancy
dge, County Surveyor
, C.Eng., F.I.C.E., F.I.H.T. | Drawing ref | Calc by | Date | Check by | Date | |--|---------------|---|----------------|-------------|-------------|----------|------| | SHEAR RESISTANCE OF ILIVETS $\frac{1}{2}$ & RIVETS & 4" PITCH $\frac{1}{2}$ = 19 mm, HOLE SIZE IS $\frac{1}{4}$ + $\frac{1}{16}$ = $\frac{1}{16}$ (20.64) FROM DORMAN CONG HANDBOOK $\frac{1}{2}$ = | | | Calculation | ons | | Out | put | | $V_{6} = 19 \text{mm} , \text{ HOLE SIZE IS } V_{6} = V_{6} = V_{6} (20.64)$ FROM DORMAN LONG HANDROOM. $T = \frac{V}{N \cdot Aeq} \leq \frac{T_{2}}{V_{11} \cdot V_{2}}$ $V \leq \frac{N \cdot Aeq}{V_{12} \cdot V_{2}} = \frac{T_{2} \cdot V_{2}}{V_{12} \cdot V_{2}}$ $Aeq = T \cdot \frac{20.64}{4} \Rightarrow 334.6 \text{mm}^{2}$ $V = \frac{2 \times 334.6 \times 195.5}{111 \times 1.11 \times \sqrt{2}}$ $V \leq \frac{2 \times 334.6 \times 195.5}{111 \times 1.11 \times \sqrt{2}}$ $V \leq 76.45 \text{kN}.$ 14.5.3.6 $\frac{V}{Aeb} \leq \frac{V_{1} \cdot V_{2}}{V_{2} \cdot V_{2}}$ $V V_{2}}$ | | | | ivets_ | | | | | 56/96 $T = V$ Aeq $V \leq N$ Aeq $V \leq N$ | | | , HOLE SIZE | | | | | | Agg = $TT \cdot 20.64$ => 334.6 mm ² $T_{1} = 0.95 \times 230$ => 195.5 N/mm ² $N = 2$ $V \leq \frac{2 \times 334.6 \times 195.5}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq 76.45 \text{ kN}$. 14.5.3.6 RIVETS IN BENDING. $V \leq \frac{10.64 \times 10.000}{1.000000000000000000000000000000$ | | · | < Ta | | VDBOOU. | | | | MITTAL ACTORS $V \leq \frac{2 \times 334.6 \times 195.5}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq 76.45 \text{ kN}$. | | | 1- | > 334.6 mm² | | | | | Actors $V \leq \frac{2 \times 334.6 \times 195.5}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq 76.45 \text{ kN}$. $V \leq 76.45 \text{ kN}$. $V \leq 76.45 \text{ kN}$. $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V
\leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ $V \leq \frac{10.45 \text{ kn}}{1.1 \times 1.1 \times \sqrt{2}}$ | | • | 45 × 130 = | > 195.5 N/ | mm² | | | | $\frac{V}{Aeb} < \frac{11. h_1 h_2 h_3 h_4 \sigma_y}{8m. \delta f_3}$ $Aeb = 20.64 \times (2 \times 11) \implies 454.08$ $V < 0.85 \times 2.5 \times 0.95 \times 1.0 \times 230 \times 454.08$ | ACTOAS
NOM | | | .5_ | | | | | $Aeb = 20.64 \times (2 \times 11) \implies 454.08$ $V < 0.85 \times 2.5 \times 0.95 \times 1.0 \times 230 \times 454.08$ 1.1×1.1 | (14.5.3.6 | | | | | | | | V < 0.85 x 2.5 x 0.95 x 1.0 x 230 x 454.08 | | | | | | | | | V < 174,24 LON SHEAR CRITICAL | | | 5 x 2.5 x 0.95 | | × 454.08 | | | | | | V < 17 | 4.24 WN | SHEAR C | MITICAL | | | #### MACHINE RIVETING LENGTHS OF RIVETS FOR VARYING GRIPS PNEUMATIC MACHINE RIVETING | + | L | ength- | | - | - | [| _ength- | | | |---|---|---|---|---|---|--|---|---|--| | [2] (| | | |] | (F | | | —}-J | | | 0.70 | (| Grip | | | - | (| Grip | | | | | | L DIAMET | ERS IN IN | CHES | Grip. | NOMINA | L DIAMET | | | | Grip
in
inches | 1/2 | <u>5</u> | 3 4 | 7 8 | in
inches | 1/2 | <u>5</u> | 34 | 7 | | inches | I | ENGTH D | INCHES | | | I | ENGTH IN | INCHES | | | 2
4
77 | 12
12 | 2
21 | 2 1
21 | 2½
2½ | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 15 | 5
 3
 4 | | -10-14-15-14-14-14-14-14-14-14-14-14-14-14-14-14- | 2
218
243
220
2274
278
278
3 | 24
25
24
25
24
25
27
3
3
4
34 | 210 - 100 - | 2122
2247
247
314
314
314
314 | | 1 2 1 4 2 2 4 4 2 2 4 4 2 4 4 2 4 4 4 4 | 1478
2 18 1478
2 18 1478
2 18 1478
2 18 1478
2 18 1478
2 18 18 18 18 18 18 18 18 18 18 18 18 18 | 13-7m
2 - m - m - m - m - m - m - m - m - m - | 178
2 18 14 28 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 2
24
24
24
25
21
22
27
27 | 18-14-78-1-1-1-18
3-3-14-78-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 76 - Mulesierie
75 75 75 75 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2
21
21
21
21
21
21
21
21
21
21
21
21
21 | 2 | 23
27
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 27
3
31
31
31
31
31
31
31
31
31
31 | 276
3 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 1 | | 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 41 | 41444
4444
5 514
514
514 | 456 478 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 44.5 55.55.55.55.55.55.55.55.55.55.55.55.5 | 3 | 3∄ | 378 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 37
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 4
44
44
44
44
44
44
44
44
44
44
44
44
4 | | 4 18 44 45 8 44 45 8 44 47 8 | | _ | 5555 5 6 6 6 6 6 6 6 | 5576 Hand-Invierte | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 47
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 5 5 6 1 2 5 6 3 4 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 5 | | | 63 | 67 | 5 | | | 6 | 6 | For hand riveting deduct 4 inch from above lengths. Note: All the above lengths are based on the rivet having the clearance in the hole. Dia. of rivet inches inche The Design Consultancy Peter Stethnidge, County Surveyor Project Comm. No. RAIL PROPERTY LTD ASSESSMENTS S1897/03 Part of scheme CHILSWORTHY BRIDGE Calc. sheet No. rev rewing ref Calc by Drawing ref Calc by Date Nov 2000 Check by Date | Peter Steth
B.Eng., M.Phi | ndge, County Surveyor
., C.Eng., F.I.C.E., F.I.H.T. | GRB | NOV 2000 | | |------------------------------|---|----------------------------|----------------|-------------------------| | Ref | Calcula | tions | · | Output | | | HORIZONTAL SHEAR | | | | | | APPLIED HONIZONTAL SH | EAR AT SUPPORT | = <u>S A Z</u> | | | PAGE 19 | SHEAR AT END OF EDGE | TROUGH = 185. | 21 hN. | | | | A = 2 x (131.5 +
OF TOP PLATE
=> 4851 mm ² | (72) ×11 | | · | | AGE 4 | ÿ = 172 mm | | | | | | I = 14971 x 1722 = | > 442902064 mm | . | | | | HORIZONTAL SHEAR = | 185.21 × 4851
442902064 | x172 | | | | = . | 348.9 N/mm | | | | | RESISTANCE SH | IEAR FORCE | | | | | 76.45 hN > | 348.9 N/mm | | : SHEAR
RESISTANCE O | | BD56/96
LI4.5.1 | MIN PITCH NOT LESS T | TAAN 2.5 TIMES | \$ OF SHANN. | RIVETS IS OR | | A(T. J. (| 2.5×19 = 47.5 : 101 | 1.5 mm % OK | | | | | MAX PITCH NOT GREATER | THAN 32E OR 300 | (THE LESSON) | | | | 32 x 9.5 mm = 304 (. | ns E 200) | | j | | | 101.5 mm < 300 : C | ok. | | | | | CHILSWORTHY BRIDGE I
AN ASSESSMENT LIVE U | | ARRYING | | | | • | | | | | | | | | | | | | | | | Structure: Chilsworthy Bridge Date: March 2004 APPENDIX C Certificate of Assessment and Checking Bridge Assessment Cornwall #### CERTIFICATE OF ASSESSMENT AND
CHECKING ## TECHNICAL APPROVAL PROCEDURES FOR ASSESSMENT OF BRIDGES AND OTHER STRUCTURES #### 1. Identification of Structure Name - Chilsworthy Bridge Location and grid reference - C507 road from Delaware Road, Chilsworthy, to Gunnislake (O.S. Ref.: SX 419 720) Engineer's Line Reference - CAL, 5m 29c #### 2. Certification of Assessment and Category 1 Check We certify that reasonable professional skill and care have been used by a competent person in the assessment and checking of the above structure with a view to securing that: - i) it has been assessed and checked in accordance with the Approval in Principle dated 22 May 2000. - ii) The assessed capacity of the structure is as follows: 40 Tonnes Assessment Live Loading HB Loading not considered since the bridge is not on the abnormal load route. Date: March 2004 #### CERTIFICATE OF ASSESSMENT AND CHECKING #### 3. Acceptance by the Technical Approval Authority Title/Professional Qualification Service Civil Enginee Date: 19 April 2004.