

APPROVAL IN PRINCIPLE FOR THE ASSESSMENT OF DEBDEN ROAD BRIDGE

ECC BRIDGE NO. 1004
RAIL PROPERTY Ltd BRIDGE NO. AEB/2116

APPROVAL IN PRINCIPLE FOR THE ASSESSMENT OF DEBDEN ROAD BRIDGE

ECC Bridge Number 1004

Rail Property Number AEB/2116

APPROVAL IN PRINCIPLE CONTENTS

- British Railways Board FORM 'AA' (BRIDGES)
- British Railways Board FORM 'AA/1' (BRIDGES)
- Location Plan
- General Arrangement, Cross Section and Idealisation Drawings
- Technical Approval Schedule "TAS" (June 1989)
- Appendix to TAS Schedule dated (June 1989) WS Atkins amended March 1999
- Appendix: Inspection for Assessment

AI1877/61/1.GEN Nov 99

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

STRUCTURE / LINE NAME

DEBDEN ROAD BRIDGE

ELR / STRUCTURE NO.

AEB 2116

BRIEF DESCRIPTION OF EXISTING BRIDGE:

(a) Span Arrangement

The bridge has a clear skew span of 7.43m. The angle of skew is 7°.

(b) Superstructure Type

The deck comprises cast iron beams with brick jack arches.

(c) Substructure Type

Brick abutments.

(d) Details of any Special Features

None

ASSESSMENT CRITERIA

(a) Loadings and Speed

Loadings to be in accordance with BD 21/97. The current permitted traffic speed across the structure is 30mph.

(b) Codes to be used

See attached TAS schedule and March 1999 addendum.

(c) Proposed Method of Structural Analysis

The cast iron beams will be assessed on a worst loaded strip analysis. The jack arches will be assessed as arches springing from the beams using the computer program ARCHIE. For the analysis the following parameters will be adopted.

i

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

STRUCTURE / LINE NAME

DEBDEN ROAD BRIDGE

ELR / STRUCTURE NO.

AEB 2116

BRIEF DESCRIPTION OF EXISTING BRIDGE:

(a) Span Arrangement

The bridge has a clear skew span of 7.43m. The angle of skew is 17°.

(b) Superstructure Type

The deck comprises cast iron beams with brick jack arches.

(c) Substructure Type

Brick abutments.

(d) Details of any Special Features

None

ASSESSMENT CRITERIA

(a) Loadings and Speed

Loadings to be in accordance with BD 21/97. The current permitted traffic speed across the structure is 30mph.

(b) Codes to be used

See attached TAS schedule and March 1999 addendum.

(c) Proposed Method of Structural Analysis

The cast iron beams will be assessed on a worst loaded strip analysis. The jack arches will be assessed as arches springing from the beams using the computer program ARCHIE. For the analysis the following parameters will be adopted.

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ARCHIE

Backing level	None
Masonry self weight	21 kN/m3
Fill self weight	19 kN/m3
Surfacing self weight	23 kN/m3
Ø' for fill	$30^{\rm o}$
ARCHIE pressure coefficient	0.3
Masonry strength	2.3 N/mm2

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

Section sizes and dimensions will be based on drawings AI1877/1004/FIG 01,06

(d) Details of any Special Requirements

None

STRUCTURAL ASSESSMENT ENGINEER'S COMMENTS

CIVIL ENGINEER'S COMMENTS

BRB WORKS GROUP COMMENTS - IF APPLICABLE

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

PROPOSED CATEGORY F	OR INDEPEN	IDENT CH	ECK
SUPERSTRUCTURE	1		
SUBSTRUCTURE	N/A		
NAME OF CHECKER SUG	GESTED IF C	CAT 2 OR 3	3 N/A
THE ABOVE IS SUBMITTI	ED FOR APPE	ROVAL IN	PRINCIPLE
		SIGNED	
		TITLE	ASSESSMENT TEAM LEAVER
		DATE	2= 112179
FOR AND ON BEHALF OF	WS ATKINS	CONSULT	TANTS LTD
CATEGORY 1			
THE ABOVE ASSESSMEN PRINCIPLE:	T, WI TH AMI	ENDMENT	TS SHOWN, IS APPROVED IN
		SIGNED	······
		TITLE	Servior Civil Engineer 21/2/00
		DATE	21/2/00
CATEGORY 2 AND 3			
THE ABOVE ASSESSMEN PRINCIPLE:	T, WITH AMI	ENDMENT	TS SHOWN, IS APPROVED IN
		SIGNED	N/A
		TITLE	
		DATE	

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

ADDITIONAL INFORMATION REQUIRED FOR BRB PUBLIC ROAD OVERBRIDGES ASSESSED AS PART OF BRIDGEGUARD III

STRUCTURE / LINE NAME	DEBDEN ROAD BRIDGE
	а западнительного полительным манимим манимим проделжения полительного
ELR / STRUCTURE NO.	AEB 2116

SCOPE OF ASSESSMENT

An inspection of the structure has been carried out prior to the assessment in order to confirm section sizes and overall dimensions as shown on the drawings. The substructure shows no signs of distress and is deemed satisfactory, therefore no analysis will be carried out.

The beams will be assessed to determine their load carrying capacity using permissible stress analysis and the jack arches will be assessed to determine their capacity at ULS. Should the deck be adequate for 40 Te loading the HB capacity will be determined.

The parapets will not be assessed since they do not meet current standards.

ASSESSMENT CRITERIA

a) Standards and Codes of Practice to be used in assessment

See attached TAS schedule and March 1999 addendum.

b) Proposed method of structural analysis

The cast iron beams will be assessed on a worst loaded strip analysis. The jack arches will be assessed as arches springing from the beams using the computer program ARCHIE. For the analysis the following parameters will be adopted.

ARCHIE

Backing level	None
Masonry self weight	21 kN/m3
Fill self weight	19 kN/m3
Surfacing self weight	23 kN/m3
Ø' for fill	$30^{\rm o}$
ARCHIE pressure coefficient	0.3
Masonry strength	2.3 N/mm2

Passive pressures generated behind the arch will be limited to 30% of the full passive pressures.

Section sizes and dimensions will be based on drawings AI1877/1004/FIG 01,06

GC/TP0356

Appendix: 4 Issue: 1 Revision: A Date: Feb 93

APPROVAL IN PRINCIPLE FOR ASSESSMENT

c) Planned Highway works / modifications at this site

Intrusive works were carried out and comprised drilling through the arch barrel. There are no other works planned.

d) Road designation / class and whether classed as a heavy load route

Unclassified road. The road is not a heavy load route.

e) Any other requirement

None.

The above is agreed subject to the amendments and comments shown below

SIGNED

TTLE 1

DATE

1 Hebbucy DEEC

county bridges Manage

FOR AND ON BEHALF ESSEX COUNTY COUNCIL TRANSPORTATION AND OPERATIONAL SERVICES DIVISION.

HEAD OF TRANSPORTATION AND
OPERATIONAL SERVICES,
ENVIRONMENTAL SERVICES DIRECTORATE,
COUNTY HALL, CHELMSFORD. CM1 1QH
Telephone

DEBDEN ROAD BRIDGE

Map Ref: TL 553823 237896

AUG 99

AUG 99

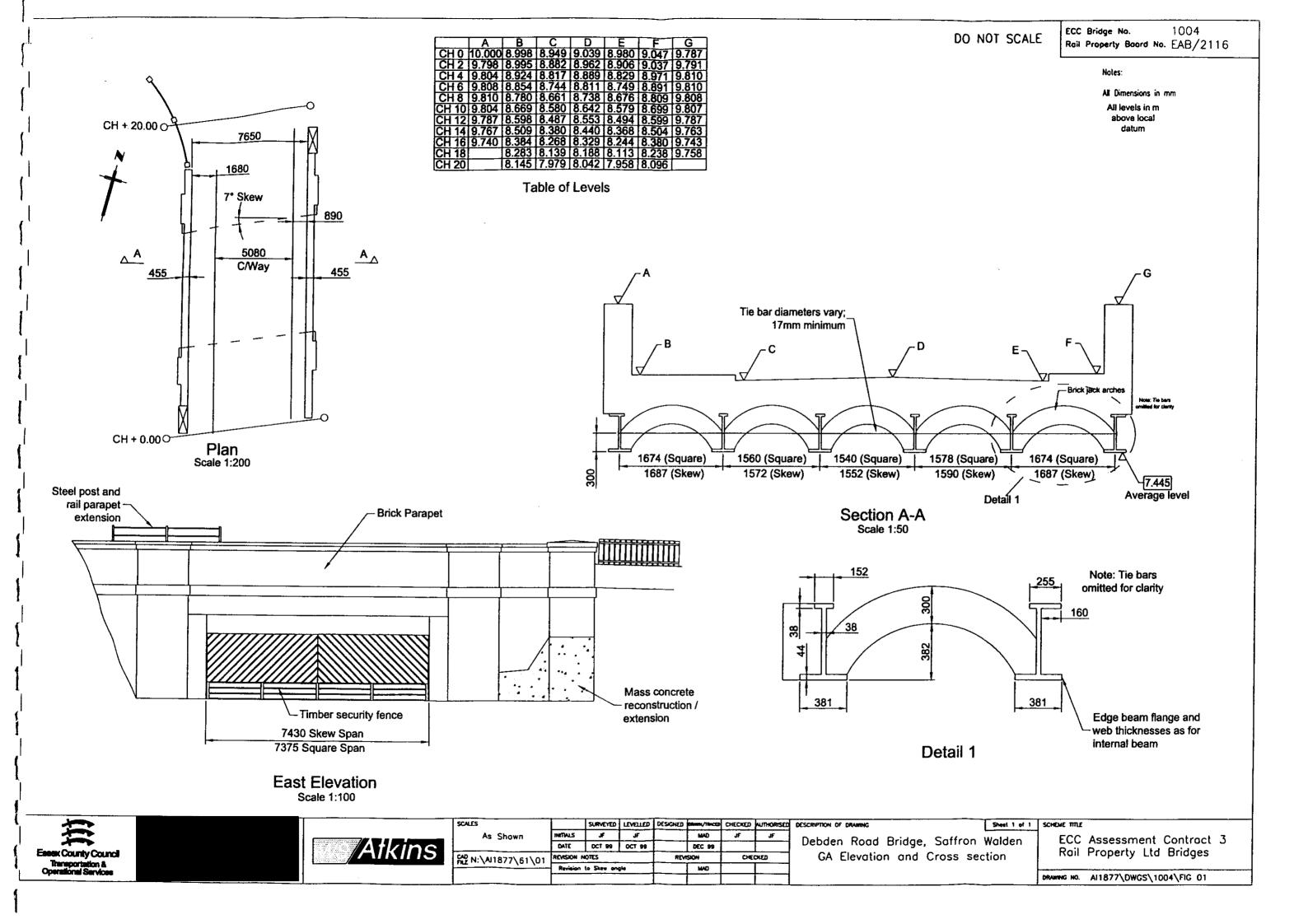
DATE

DATE

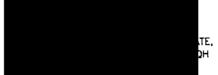
DATE

DRAWN/TRACED TNP

AJS

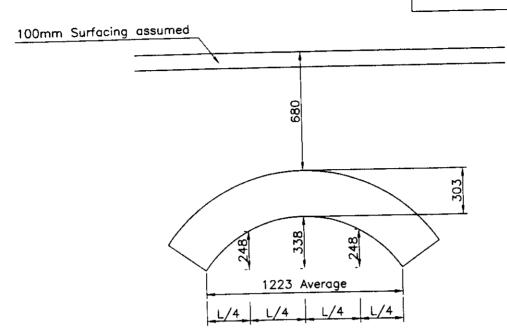

CHECKED

AUTHORISED



SAFFRON WALDEN

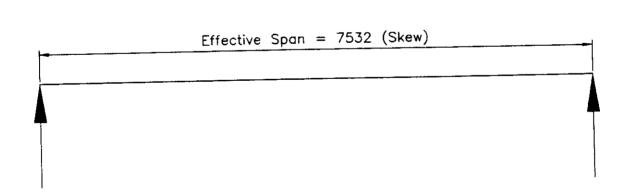
LOCATION PLAN



ECC Bridge No.

1004

Rail Property Board No. AEB/2166



JACK ARCH

Note:

All dimensions shown are average for all

jack arches

CAST IRON BEAM SECTION

DEBDEN ROAD BRIDGE, SAFFRON WALDEN IDEALISATION DIAGRAMS

DRWG.NO. Al1877/dwgs/61/fig06		
CAD NO. N:AI1877/-61-06		
SCALES NTS		
DATE NOV 99	DRAWN/TRACED SD	
DATE NOV 99	CHECKED JF	
DATE	AUTHORISED	

TECHNICAL APPROVAL SCHEDULE

A11877/61/1.GEN Nov 99

TECHNICAL APPROVAL SCHEDULE "TAS" (JUNE 1989)

SCHEDULE OF DESIGN DOCUMENTS RELATING TO HIGHWAY BRIDGES & STRUCTURES (All documents are taken to include revisions current at date of this TAS).

1. BRI	TISH	STAN	DARDS
--------	-------------	------	-------

BS 153 Part 3A, Specification for Steel Girder Bridges (see BE 1/77).

BS 5268 Part 2, Structural Use of Timber

BS 5400 Steel concrete and composite bridges

Part 1: 1978 - General Statement (SEE BD 15/82)

Part 2: 1978 - Specification for loads (see BD 14/82)

Part 3: 1982 - CP for design of steel bridges (see BD 13/82)

Part 4: 1984 - CP for design of concrete bridges (see BD 24/84)

Part 5: 1979 - CP for design of composite bridges (see BD 16/82)

Part 9: 1983 - Bridge bearings (see BD 20/83)

Part 10: 1980 - CP for fatigue (see BD 9/81)

BS 5628: Part 1: 1978 - Unreinforced Masonry

BS 5030: 1981 - Site investigations

BS 6031: 1081 - Forthworks

2. BRITISH STANDARD CODES OF PRACTICE

CP 114		Part 2	Reinforced concrete in buildings
(see		Tech Memo BE 1/73)	
CP 116		Part 2	The structural use of precast
concrete		(see Tech Memo BE 1/73)	
CP	118		The structural use of aluminium
CP			Earth retaining structures
CP	2004		Foundations

3	PUBLICATIONS	(HMSO)
J.	LODDICKTIONS	(221.200)

Railway construction and Operation Requirements, Structural and Electrical clearances (1977).

Railway construction and operation. Requirements for passenger lines and recommendations for goods lines 1950 (reprinted 1970).

Roads in urban areas and Metric Supplement (as amended by TA 32/82)

Layout of roads in rural areas and Metric Supplement (as amended by TA 28/82).

Specification for Highway Works and Notes for Guidance (1986 Edition).

Highway Construction Details (1987 Edition).

Simplified Tables of External loads on Buried Pipelines (1970).

4. MISCELLANEOUS

AI1877/61/1.GEN

Circular Roads No 61/72 - Routes for heavy and high abnormal loads.

5. TECHNICAL MEMORANDA (BRIDGES)

BE 5 The design of Highway bridge parapets (4th revision)

BE 27 Waterproofing and surfacing of bridge docks.

BE 3/72 Expansion joints for use La highway bridge docks.

BE 1/73 Reinforced concrete for highway structures (Relevant ports for the design of buried precast concrete pipes and sign/signal gantries only).

BE 1/74 The independent checking of erection proposals and temporary works details for major highway structure an trunk roads and motorways.

BE 8/75 Painting of concrete highway structures

BE1/77 Standard highway loadings (Relevant parts for the design of buried precast concrete pipes and sign/signal gantries only)

BE 7/77 Department standard (interim) motorway sign/signal gantries

BE 1/78 Design criteria for footbridges and sign/signal gantries (Relevant for the design of sign/signal gantries only)

BE 3/78 Reinforced earth, and anchored earth retaining walls and bridges abutments for embankments

Nov 99

6. HIGHWAYS TECHNICAL MEMORANDA
H 14/76 Noise barriers - Standard and Materials
7. MEMORANDA (BRIDGES)
IM 5 Formation of continuity joints in bridge decks
8 DEPARTMENTAL STANDARDS
8.1 TRAFFIC ENGINEERING AND CONTROL
TD 2/78 - Pedestrian Subways - layout and dimensions
TD 3/79 Combined pedestrian and cycle subways - layout and dimensions
TD 9/81 Road layout and geometry. Highway link design
TD 19/83 Safety fences and barriers
TD) 27/86 Cross Sections and headroom
8.2 BRIDGES AND STRUCTURES
BD 2/89 Technical approval of DTp highway structures on motorways and other trunk roads
BD 6/81 Approval in principle and calibrating of computer programs for use in DTp highway structures on trunk roads and motorways
BD 7/81 Weathering steel for highway structures
BD 9/81 Implementation of BS 5400 Pt 10, CP for fatigue
BD 10/82 Design of highway structures in areas of mining subsidence
BD 12/82 Corrugated steel buried structures
BD 13/82 Design of steel bridges - 'Use of BS 5400 Pt 3: 1982
BD 14/82 Loads for highway bridges - Use of BS 5400 Pt 2: 1978
BD 15/82 General principles - Use of BS 5400 Pt 1 : 1978
BD 16/82 Design of composite bridges - 'Use of B3 5400 Pt 5-, 1979
BD 19/83 Standard Bridges
BD 20/83 Bridge Bearings - 'Use of BS S400 Part 9: 1983
BD 21/84. The assessment of highway bridges and structures

AI1877/61/1.GEN

Nov 99

BD 24/84	Design of concrete bridges - Use of BS 5400 Pt 4: 1984
BD 26/86	Design of lighting columns
BD 27/86	Materials for the repair of concrete highway structures
BD 28/87.	Early thermal cracking of concrete
BD 29/87	Design criteria for footbridges
BD 30/87	Backfilled retaining walls and bridge abutments
BD 31/87	Buried concrete box type structures
BD 32/88	Piled foundations
BD 34/88	Assessment and Strengthening of Highway Structures on Motorways and othe Trunk Roads
BD 35/88	Quality Assurance Scheme for paints and similar protective coatings
BD 36/88	The Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures
BD 37/88	Loads for Highway Bridges

AI1877/61/1.GEN Nov 99

APPENDIX TO TAS SCHEDULE DATED JUNE 1989 (WS Atkins amended March 1999, incorporating relevant technical standards published since June 1989)

1. BRITISH STANDARDS

BS 4360: 1990 Specification for Weldable Structural Steel.

BS 4466: 1989 - Scheduling, Dimensioning, Bending and Cutting of Steel
Reinforcement for Concrete

BS 5400 - Steel, Concrete and Composite Bridges.

Part 1: 1988 - General Statement (see BD 15/92).

Part 4: 1990 - CP for Design of Concrete Bridges (see BD 24/92).

BS 5628 - Use of Masonry.

Part 1: 1992 - Unreinforced Masonry.

Part 2: 1085 Reinforced and Prestressed Masonry.

RS 5075: 1006 CP for Falsework

BS 6779 - Highway Parapets for Bridges and Other Structures

Part 1: 1908 - Specification for Vehicle Containment Parapets of Metal Construction.

Part 2: 1991 - Specification for Vehicle Containment Parapets of Concrete Construction.

Part 3: 1994 - Specification for Vehicle Containment Parapets of Combined Metal and Concrete Construction.

BS 7205: 1990: Fusion Bonded Epoxy Coated Carbon Steel Bars for the

Parts 1 & 2 Reinforcement of Concrete

BS 7668: 1984 - Weldable Structural Steels. Hot Finished Structural Hollow

Sections in Weather Resistant Steels

BS 8002: 1994 CP for Earth Retaining Structures.

BS 8004: 1986 - CP for Foundations.

BS 8118 Structural Use of Aluminium.

BS EN 10025: 1993 - Specification for Hot Rolled Products of Non-alloy Structural Steels - Technical Delivery Conditions.

BS EN 10113: Hot Rolled Products in Weldable Fine Grain Structural Steel.

Parts 1-3

A11877/61/1.GEN Nov 99

BS EN 10155: 1993 - Structural Steel with Improved Atmospheric Corrosion Resistance. Technical Delivery Conditions.

3. DoT PUBLICATIONS (HMSO)

Manual of Contract Documents for Highways Works:

Volume 1: Specification for Highway Works.

Volume 2: Notes for Guidance on the Specification for Highways

Volume 3: Highway Construction Details.

Volume 4: Bills of Quantities for Highways Works.

8. DEPARTMENTAL STANDARDS

8.1 TRAFFIC ENGINEERING AND CONTROL

TD 9/93 Road Layout and Geometry, Highway Link Design.

TD 27/96 Road Geometry Links - Cross Sections and Headrooms.

TD 32/03 Wire Rope Safety Fences.

TD 36/93 - Subways for Pedestrians and Pedal Cyclists - Layout and Dimensions

8.2 BRIDGES AND STRUCTURES

BD 10/97 Design of Highway Structures in Areas of Mining Subsidence.

BD 12/95 Design of Corrugated Steel Buried Structures with Spans not Exceeding 8m, Including Circular Arches.

BD 13/90 Design of Steel Bridges. Use of BS 5400 Pt 3: 1982.

BD 15/92 - General Principles for the Design and Construction of Bridges - Use of BS 5400 Pt 1: 1988.

BD 20/92 Bridge Bearings. Use of BS 5400 Pt 9: 1983.

BD 21/97 - The Assessment of Highway Bridges and Structures.

BD 24/92 Design of Concrete Bridges - Use of BS 5400 Pt 4: 1990.

BD 26/94 Design of Lighting Columns.

BD 33/94 Expansion Joints for Use in Highway Bridge Decks.

BD 34/90 -	Technical Requirements for the Assessment and Strengthening Programme for Highway Structures on Motorways and Other Trunk Roads. Stage 1 - Older Short Span Bridges and Retaining Structures.
BD 35/93	Quality Assurance Schemes for Paints and Similar Protective Coatings.
BD 36/92	Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures.
BD 41/97	Reinforced Clay Brickwork Retaining Walls of Pocket Type and Grouted Cavity Type Construction.
BD 42/94	Design of Embedded Retaining Walls and Bridge Abutments (Unpropped or Propped at the Top).
BD 43/90	Criteria and Materials for the Impregnation of Concrete Structures.
BD 44/95	The Assessment of Concrete Highway Bridges and Structures.
BD 45/93	Identification Marking of Highway Structures.
BD 46/92	Technical Requirements for the Assessment and Strengthening Programme for Highway Structures. Stage 2 - Modern Short Span Bridges.
BD 47/94	Waterproofing and Surfacing of Concrete Bridge Decks.
BD 48/93	The Assessment and Strengthening of Highway Bridge Supports.
BD 49/93	Design Rules for Aerodynamic Effects on Bridges.
BD 50/92	Technical Requirements for the Assessment and Strengthening Programme for Highways Structures. Stage 3 - Long Span Bridges.
BD 51/98	Design Criteria for Portal and Cantilever Sign/Signal Gantries.
BD 52/93 -	The Design of Highway Bridge Parapets.
BD 53/95	Inspections and Records for Road Tunnels.
BD 54/93	Post Tensioned Concrete Bridges. Prioritisation of Special Inspections.
BD 56/96	The Assessment of Steel Highway Bridges and Structures. Nov 99

AI1877/61/1.GEN

BD 57/95 Design for Durability.

BD 58/94 - The Design of Concrete Highway Bridges and Structures with External and Unbonded Prestressing.

BD 60/94 The Design of Highway Bridges for Vehicle Collision Loads.

BD 61/96 The Assessment of Composite Highway Bridges.

BD 62/94 As Built, Operational and Maintenance Records for Highway Structures.

BD 63/94 Inspection of Highway Structures.

BD 65/97 Design Criteria for Collision Protector Beams.

BD 67/96 Enclosures of Bridges.

BD 68/97 Crib Retaining Walls.

BD 70/97 Strengthened / Reinforced Soils and Other Fills for Retaining Walls and Bridge Abutments (Use of BS 8006: 1995).

SD 4/92 — Procedure for Adoption of Proprietary Manufactured Structures.

Nov 99

Appendix

Inspection for Assessment

Al1877/61/1.GEN Nov 99

Rail Property Ltd

ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. AEB/2116

ECC Bridge No. 1004

Structure: Debden Road Bridge

Date: November 1999

BRIDGE INSPECTION DETAILS AND CONDITION RATING

ECC Bridge No.:

1004

Rail Property Ltd Bridge No.: AEB/2116

Bridge Name:

Debden Road Bridge

Location:

Debden Road Bridge, Saffron Walden,

Essex

Grid reference TL 53823 37896

Date of Inspection:

Weather:

20 October 1999

Overcast & cold

Description:

Single span structure comprising cast iron beams with brick jack arches. The structure has brickwork abutments and

parapets. The west elevation has been backfilled to

carriageway level.

Inspection Method:

Hands on

CONSULTING ENGINEERS CONDITION RATING		
**** Satisfactory Condition		
	***	Repairs Required
√	**	Urgent Repairs Required
<u></u>	*	Bridge In Dangerous Condition

To be filled in by Essex County Council

	Date
Inspected by	20 Oct 1999
Prepared by	Nov 1999
Checked by	Dec 1999

		JUE CI	JENT		NO 1004
	File		Initial	Date	Suggested
1					Condition
199					Rating
e 1	Read by				
	Read by		المحيد المحمد على المحمد المحادث		Party Data in
(ommen	ts	A Larger Half Clar		
100			马克勒克 克龙		S-Linux Me (I)
			genrak jiggelekt	riche de leuropei presiden	Guid Pretik
			and the second second	inntas : CZTOBÍTŠE V	
	15 B		House the second		
9					
	1.1				等。[\$P\$0] [\$P\$0]

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. AEB/2116 ECC Bridge No. 1004

Structure: Debden Road Bridge Date: November 1999

Index

Section	Description	Page No.
1	Introduction	1
2	Reference Drawings	2
3	Inspection Procedure	3
4	Condition Report	4
5	Intrusive Investigation Report	8
6	Conclusions	9
7	Recommendations for Assessment	11
	Appendix – A : Photographs	
	Appendix – B : Defect Diagrams	
	Appendix - C : Statutory Undertakers	

Date: November 1999

1.0 INTRODUCTION

- 1.1 Essex County Council (ECC) entered into an agreement with Rail Property Ltd to assess Rail Property Ltd owned bridges carrying publicly maintainable highways. WS Atkins Consultants Ltd Essex (WSAE) have been appointed by ECC to carry out the visual inspections and assessments of the bridges.
- 1.2 Debden Road Bridge carries an unclassified road over a dismantled railway line in Saffron Walden, Essex OS Ref. TL 53823 37896.
- 1.3 An inspection of the structure was carried out on 20 October 1999. The client supplied previous assessment data giving the cast iron beam details and some dimensions of the structure. The inspection included a visual inspection and dimension survey to confirm structural details. The weather was overcast and cold during the inspection.
- 1.4 The results of the inspection are presented within the text of this report.
- 1.5 The bridge is a single span structure comprising cast iron beams with brick jack arches and is supported on brickwork abutments. The clear square span is 7.375m and the bridge has a skew of 7°. The parapets are of brickwork construction with a steel post and rail height extension at the south end. The west elevation has been backfilled to carriageway level and now retains a car park for a new residential development. A wooden fence prevents access under the structure.
- 1.6 The carriageway is 5.08m wide with a 0.89m and 1.68m wide footway on the east and west side of carriageway respectively. The vertical alignment of the carriageway is a gentle hog curve and the horizontal alignment is straight.
- 1.7 There is a 22 tonnes weight restriction on the structure.

Date: November 1999

2.0 REFERENCE DRAWINGS

2.1 Rail Property Ltd provided drawings prior to the inspection. The drawing reference is:

Extracts from Examination Report

Dated 30 October 1963

Following the inspection, survey drawings are produced as below and enclosed in the Approval in Principle for Assessment.

AI1877/DWGS/1004/FIG 01

GA Elevation and Cross Section

Following the inspection, defect diagrams are produced as below and enclosed in appendix B.

AI1877/DWGS/1004/FIG 02
AI1877/DWGS/1004/FIG 03
AI1877/DWGS/1004/FIG 04
AI1877/DWGS/1004/FIG 05
Defect Diagrams: Abutments
Defect Diagrams: Parapets
Defect Diagrams: Elevations
Defect Diagram: Soffit

Date: November 1999

3.0 INSPECTION PROCEDURE

- 3.1 The inspection was undertaken on 20 October 1999. Reference was made to the Bridge Inspection Guide (HMSO 1983) and the Department of Transport standard BD21/97 and advice note BA16/97.
- 3.2 The visual inspection of the structure was carried out to determine the condition of the bridge. The inspection was carried out within touching distance. Where required, access to the higher level elements of the structure was gained using a ladder.
- A full level and dimensional survey was undertaken. Details of the levels and dimensions taken during the inspection are indicated on Drawings No. AI1877/DWGS/1004/FIG 01 which are included in the Approval in Principle.
- 3.4 The extent and severity of all defects were recorded. The photographs in Appendix A and the defect diagrams (Drawing Nos. AI1877/DWGS/1004/FIG 02, FIG 03, FIG 04 and FIG 05) in Appendix B illustrate the defects.
- 3.5 The intrusive investigation works comprised drilling a hole through the crown of a single jack arch barrel. The results of this investigation are given in Section 5.0 of this report.

Date: November 1999

4.0 CONDITION REPORT

4.1 Foundations

4.1.1 The foundations were not accessible during the inspection. No evidence of any movement or distress was detected.

4.2 Abutments

- 4.2.1 The substructure of the bridge consists of brickwork abutments. Large areas of the abutments (particularly to the west where backfill for the car park is placed) are buried and could therefore not be inspected (Photo 14).
- 4.2.2 A service pipe suspended from a cast iron beam has been passed under the structure through both abutments. As such, small areas of brickwork around this have been reconstructed (Photo 3).
- 4.2.3 The abutments appear to be in fair condition with the following defects identified:
- Large areas of graffiti cover both abutments. Some of the graffiti is offensive, however since access under the bridge is restricted it will not be viewed by the public (Photo 3).
- There are several individual bricks missing from the south abutment with the voids up to depths of 130mm (Photo 15).
- Minor spalling has occurred in small areas on both abutments.
- There is leach staining on the south abutment under the east padstone as well as on the east side face of both abutments (Photo 12).

4.3 Wing walls

- 4.3.1 The west elevation has been buried up to carriageway level due to backfilling for a car park to a nearby residential development. Inspection was therefore not possible. An area of the car park is vertically displaced by up to 200mm indicating settlement or movement of the fill below (Photo 8). From beneath the bridge, the backfill material used to raise the ground level to above the deck soffit does not appear to have been well placed or compacted.
- 4.3.2 An area of the east wing wall (possibly where the embankment used to cover the wall) has been repaired or extended with mass concrete as part of the nearby residential development.

Date: November 1999

4.3.3 The east wing walls are in fair condition with the following defects identified:

- Dense ivy and vegetation growth cover large areas of the wing wall.
- Spalling brickwork to depths of 50mm and mortar loss can be found throughout, particularly along the parapet plinth course (Photo 6).
- The mass concrete used in the section to the north is poor quality with loss of cement paste and subsequent loss of aggregate throughout.
- A 2mm wide diagonal crack runs up the upper half of this mass concrete section.

4.4 Deck beams and jack arches

- 4.4.1 The beams are cast iron and the jack arches are constructed from London Stock type brickwork with lime mortar.
- 4.4.2 The cast iron beams are in fair condition with areas of the bottom flange and edges displaying surface corrosion (Photos 4 and 10). The west edge beam could not be fully inspected due to back fill for the car park discussed in section 4.3.
- 4.4.3 The tie rods are severely corroded with up to 70% section loss (Photo 16).
- 4.4.4 The brick jack arches are in poor condition with areas of spalling to a depth of 75mm and loss of joint mortar to 60mm (Photo 5). There is graffiti and black staining throughout as well as a small area of leaching. Several individual bricks rang hollow when tapped with a hammer suggesting localised separation of the arch rings.

4.5 Embankments

- 4.5.1 The embankments adjacent to the south east wing wall are heavily overgrown and show no signs of any significant erosion or slippage.
- 4.5.2 There are no embankments to the west as the ground level has been raised as part of a nearby residential development. The embankment adjacent to the north east wing wall has been mostly removed with the remaining embankment in good condition and forming part of the gardens for nearby flats.

Date: November 1999

4.6 Parapets

- 4.6.1 The parapets comprise 455mm thick brickwork with a capping of a course of blue brickwork. There are lengths of steel post and railing fencing on top of the parapet at the south east and south west ends of the parapets. No vertical movement joints were found along the parapets.
- 4.6.2 The west parapet is now redundant as the level behind has been raised to road level to accommodate a car park.
- 4.6.3 The parapets are in poor condition with the following defects identified:
- Brickwork is missing to a depth of 230mm from the carriageway face of the west abutment (Photo 7). There are several smaller areas of spalling and brickwork loss to depth up to 130mm on both parapets.
- Mortar loss up to 50mm deep has occurred along the full length of the lower half of the east parapet carriageway face. Further isolated areas of mortar loss have occurred throughout both parapets.
- Dense ivy growth covered the south east and the north west pilasters. Smaller areas of vegetation growth are also found on both parapets.
- One of the steel posts on top of the east parapet is bent and the top rail has displaced and is also bent. There is surface corrosion and paint loss to both the east and west post and rail sections (Photo 11).
- It is thought that the steel rails raise the parapet height to acceptable level as they coincide with the raised vertical alignment of the carriageway and footway.
- There are several vertical cracks up to 2mm wide, some of which run the full height of the parapets. In all cases the cracks only appear on the carriageway faces.
- The coping unit to the south west pilaster has been displaced, possibly by vehicular impact. There is mortar loss and spalling along the joint between the coping unit and the pilaster (Photo 13).
- There is a hairline crack running through the north west coping unit.
- The south end of the east parapet has been recently reconstructed. There are several loose and missing bricks where the new construction joins the old (Photo 9).

4.7 Road Surface

- 4.7.1 The road surface over the bridge deck is in good condition with the exception of very minor polishing in the wheel tracks.
- 4.7.2 The observed traffic flow was less than 7 heavy goods vehicles per hour. This is concluded to be representative.

Date: November 1999

4.8 Footway Surface

4.8.1 The footway surfacing is in good condition with the exception of a minor depression in the west footway due to a poor reinstatement.

4.9 Waterproofing

4.9.1 The areas of leach staining on the abutments indicate the lack of an effective waterproofing system (Photo 12). Since no intrusive testing was carried out on the upper surface of the deck this could not be confirmed. However, extracts from an Examination Report supplied by the client indicate the presence of a bituminous waterproofing layer. If this still remains it has failed in some locations.

4.10 Signing

4.10.1 The 22 ton weight restriction signs are in good condition.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. AEB/2116 ECC Bridge No. 1004

Structure: Debden Road Bridge

Date: November 1999

5.0 INTRUSIVE INVESTIGATION REPORT

5.1 A jack arch barrel thickness of 300mm was obtained from the intrusive investigation.

Date: November 1999

6.0 CONCLUSIONS

- 6.1 The structure is in fair condition overall. As well as element specific remedial work there are several areas of spalling, loose and missing brickwork and mortar loss through out the structure that require repair.
- The abutments are in fair condition. However much of the abutments are buried by backfill to support housing and parking facilities adjacent to the bridge. Minor spalling has occurred and several individual bricks are missing. These will require repair. Large areas are covered with graffiti but these are not considered serious since public access under the bridge is restricted.
- The west elevation is buried and could not be inspected. However, settlement of the backfill has occurred with a depression in the adjacent car park surfacing. This will require monitoring for further deterioration.
- The east wing walls are in fair condition. To the north east wing wall some brickwork has been replaced or repaired with mass concrete. This concrete is of poor quality with loss of cement paste and aggregate, and a diagonal crack is present to its upper half. Concrete repairs will be required to prevent further deterioration.
- 6.5 The cast iron beams are in fair condition. The bottom flanges show signs of minor pitting and surface corrosion. A reduction in section will be required for assessment and the beams cleaned coated with an effective paint system
- The tie bars joining adjacent beams are severely corroded and it is estimated that they have 70% section loss. The badly corroded areas will require repair or replacement and remaining areas cleaned and repainted.
- 6.7 The brick jack arches are in poor condition. A hammer survey indicated localized separation of the arch rings. Repair work to loose brickwork will be required.
- 6.8 The parapets are in poor condition. Impact damage is evident to the south pilaster which will require re-setting. Repairs should be carried out to these defects. In addition one of the steel posts and railings on the east parapet have been damaged and it is likely that, if required, the entire metal section of the parapet will need replacing. It should be noted that the west parapet is redundant and that this should be taken into account when considering the cost implications of any repairs.
- The lack of an effective waterproofing system is indicated by the water rundown and staining to the jack arches. The installation of a waterproofing membrane to the deck should prevent further deterioration of brickwork.

Date: November 1999

6.10 In accordance with BD 21/97 clause 5.24, for HA UDL and KEL a category of Lp is appropriate, corresponding to low traffic flow and poor road surface condition. In determining this category it has been assumed that, whatever the road surface condition at the time of inspection, at some stage in the life of the structure there is likely to be a deterioration to a level corresponding to the 'poor' category.

6.11 Based on the level and dimensional survey the structure has the following geometric features:-

Cast Iron Beams:

Skew span (L) = 7.532m Skew angle (α) = 7°

Jack Arches

Square span(L) = 1.223 m

Dimensions were obtained from levels, site measurements and photographs. See drawings included in the Approval in Principle.

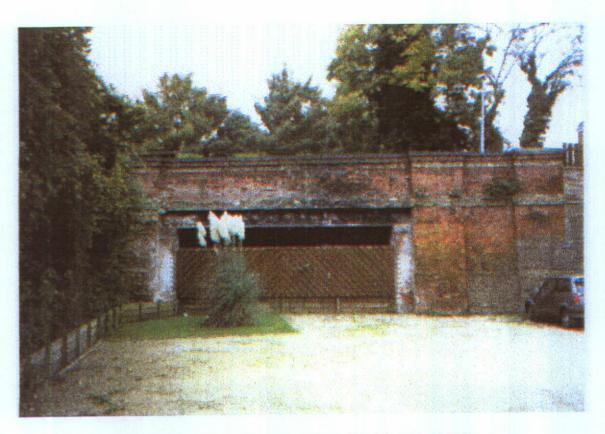
6.12 Based on the inspection and intrusive investigation works the arch barrel has the following properties:

Barrel thickness =300mm
Masonry strength =2.3N/mm²
(BD 21/97 fig. 4.2, London Stocks & lime mortar)
No structurally significant longitudinal cracking.
Some localised arch separation.

- Based on this inspection and the recommendations of BA16/97 Annex D and BD 21/97 6.21, a condition factor F_c of 0.45 will be used for an ARCHIE analysis.
- 6.14 Based on the inspection, a condition factor F_{cm} of 1.0 would be appropriate for the assessment of the cast iron beams provided the actual beam section is used. The dimensions shown on the drawings included in the Approval in Principle for Assessment allow for any section loss due to corrosion.
- 6.15 Statutory Undertaker's plant is present on the structure (refer to appendix C) but no detrimental effects were observed.

Date: November 1999

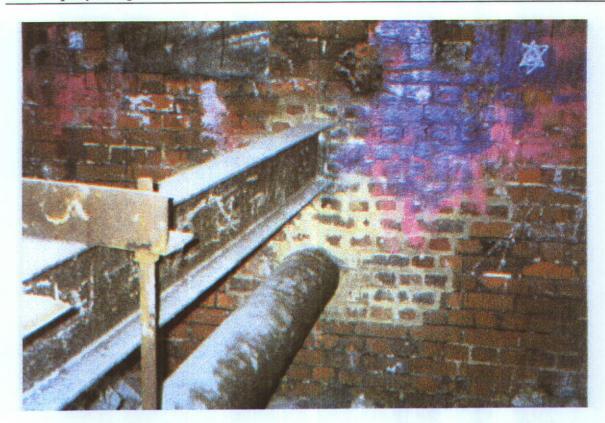
7.0 RECOMMENDATIONS FOR ASSESSMENT

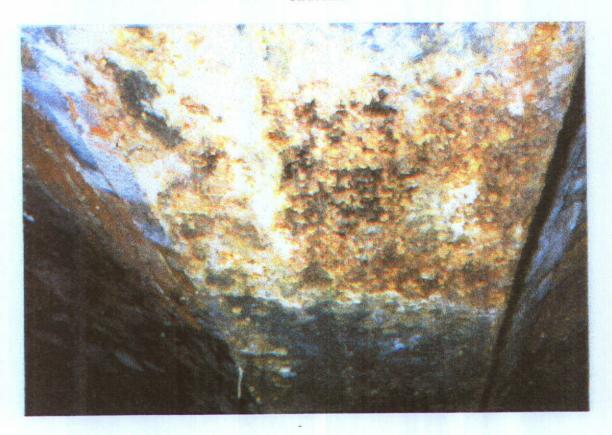

- 7.1 The information collected from the site inspection, with respect to defects affecting the structural integrity of the bridge, should be incorporated into the Approval in Principle. Defects affecting the assessment are described in section 6.0. It is recommended that, for the ARCHIE analysis, the condition factor in section 6.13 should be adopted. No allowance need be made for the effects of arch ring separation as the observed defects were localized. For analysis of the cast iron beams the condition factor in 6.14 should be adopted. The tie rods should be analysed based on the corroded section properties stated in section 6.6. No other allowance need be made for the structural deterioration in the assessment calculations.
- 7.2 For the assessment, the geometric properties and material strengths in sections 6.11 and 6.12 should be adopted.
- 7.3 For assessment purposes only, the condition of the road should be taken as poor with low traffic flow (Lp).
- 7.4 Statutory Undertaker's plant is present on the structure (refer to appendix C). This can have a detrimental effect on the interaction of the fill with the jack arches. However, this effect is difficult to measure or quantify and should not be taken into account.
 - Note that the following are maintenance recommendations and will not affect the proposed assessment.
- 7.5 The weathered, eroded and missing areas of brickwork should be replaced or repaired. All cracking to structure should be monitored and repaired as necessary.
- 7.6 A more extensive hammer survey should be carried out to the jack arch barrels and, if necessary, repairs carried out.
- 7.7 The corroded tie rods should be repaired and painted.

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. AEB/2116 ECC Bridge No. 1004

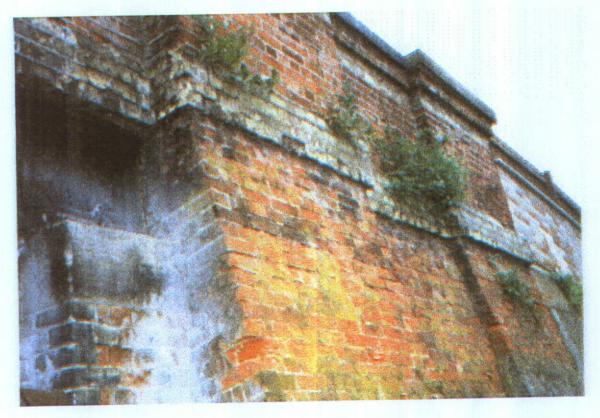
Structure: Debden Road Bridge Date: November 1999

APPENDIX A


Photographs


Photograph 1 – East elevation of Debden Road Bridge

Photograph 2 - View over Debden Road Bridge looking north


Photograph 3 – Typical graffiti on abutment and view of service ducts running under structure

Photograph 4 - Corrosion to bottom flange of cast iron beam

Photograph 5 - Typical spalling brickwork on jack arch soffit

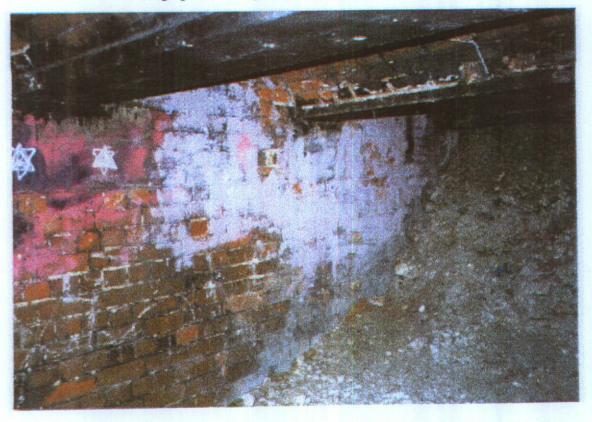
Photograph 6 - North east wing wall showing spalling and vegetation growth

Photograph 7 - Missing brickwork from west parapet

Photograph 8 - Depression and cracking in car park surfacing adjacent to west elevation

Photograph 9 – Loss of brickwork from joint between old and new brickwork at the south end of the east parapet

Photograph 10 - View of east beam. Note spalling brickwork on parapet plinth string course


Photograph 11 - Damage to steel post and rail at south end of east parapet

Photograph 12 - Leach staining on south abutment

Photograph 13 - Displaced coping stone to south pilaster

Photograph 14 - View of east abutment showing backfill covering west elevation.

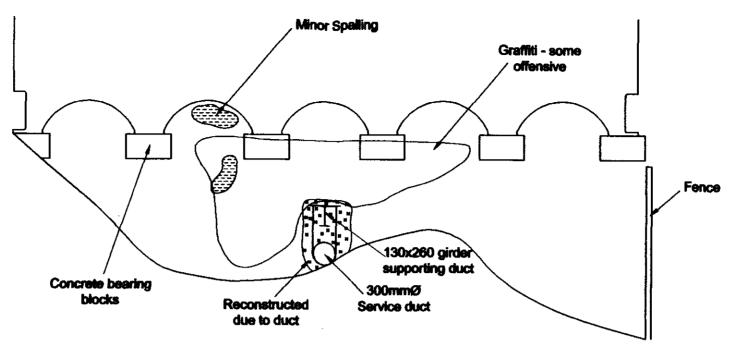
Photograph 15 - Missing brick, typical to the east abutment

Photograph 16 – Typical corrosion to tie rods

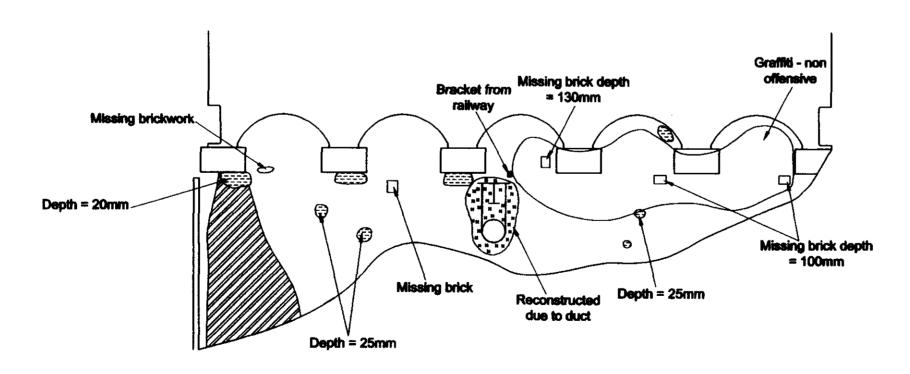
APPENDIX B

Defect Diagrams

ECC ASSESMENT CONTRACT 3 - RAIL PROPERTY Ltd BRIDGES DETAIL OF STANDARD KEY


KEY	
Damp concrete/brickwork/stonework	
Leaching	
Dry water staining	
+ + + + + + Hollow areas (tapping survey)	
Corrosion	
Algae	
Lichen	
Calcareous deposits	
Spalling	
Pointing loss	
<u>+</u> → Vegetation growth	
C=0.3 Crack width in mm	
C=0.3 Crack width in mm R Area of repair	ı
N Area of new brick/stonework	
Efflorescence	
▼▼▼▼ Frost damage	
	l l

DO NOT SCALE

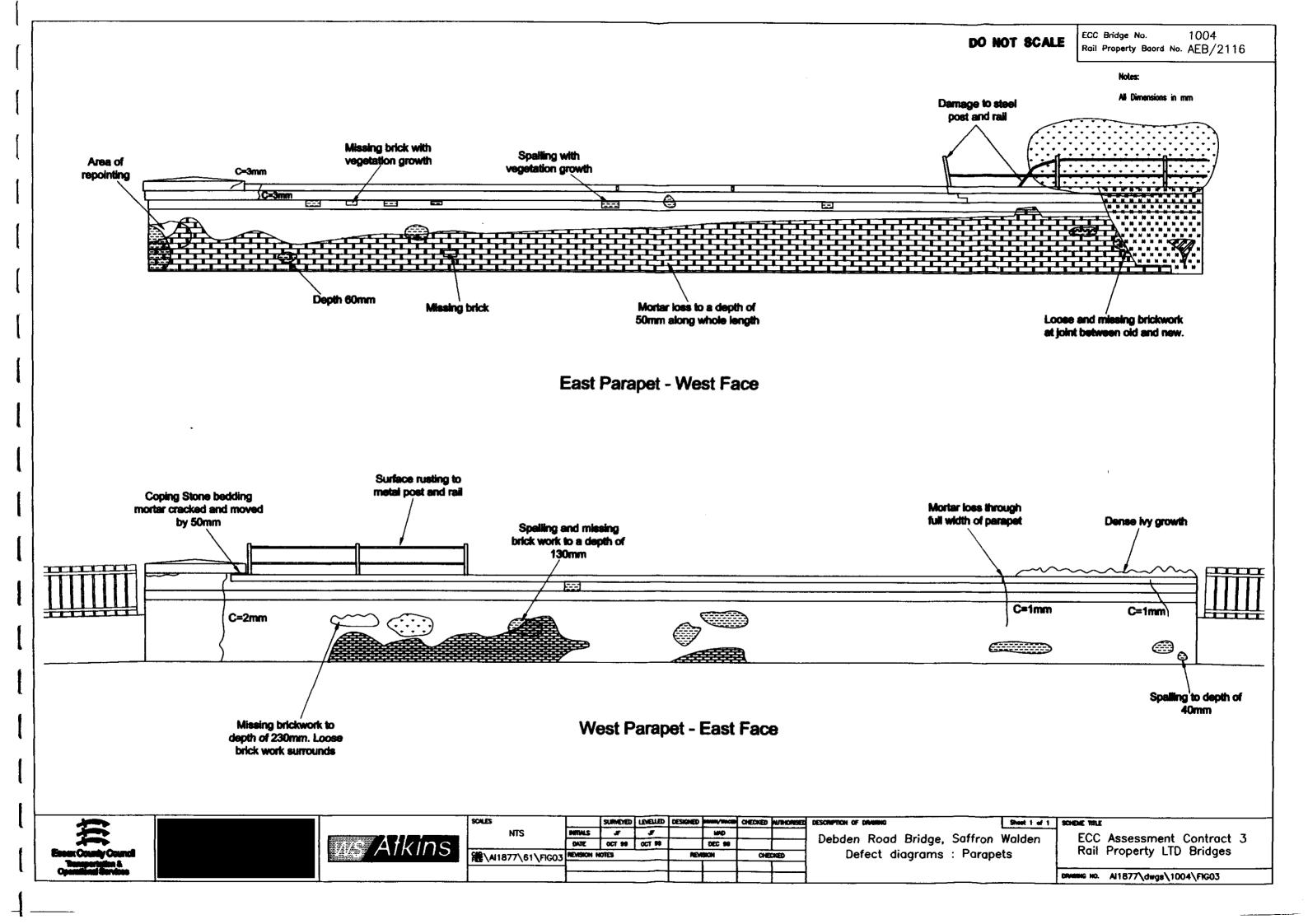

ECC Bridge No. 1004
Rail Property Baord No. AEB/2116

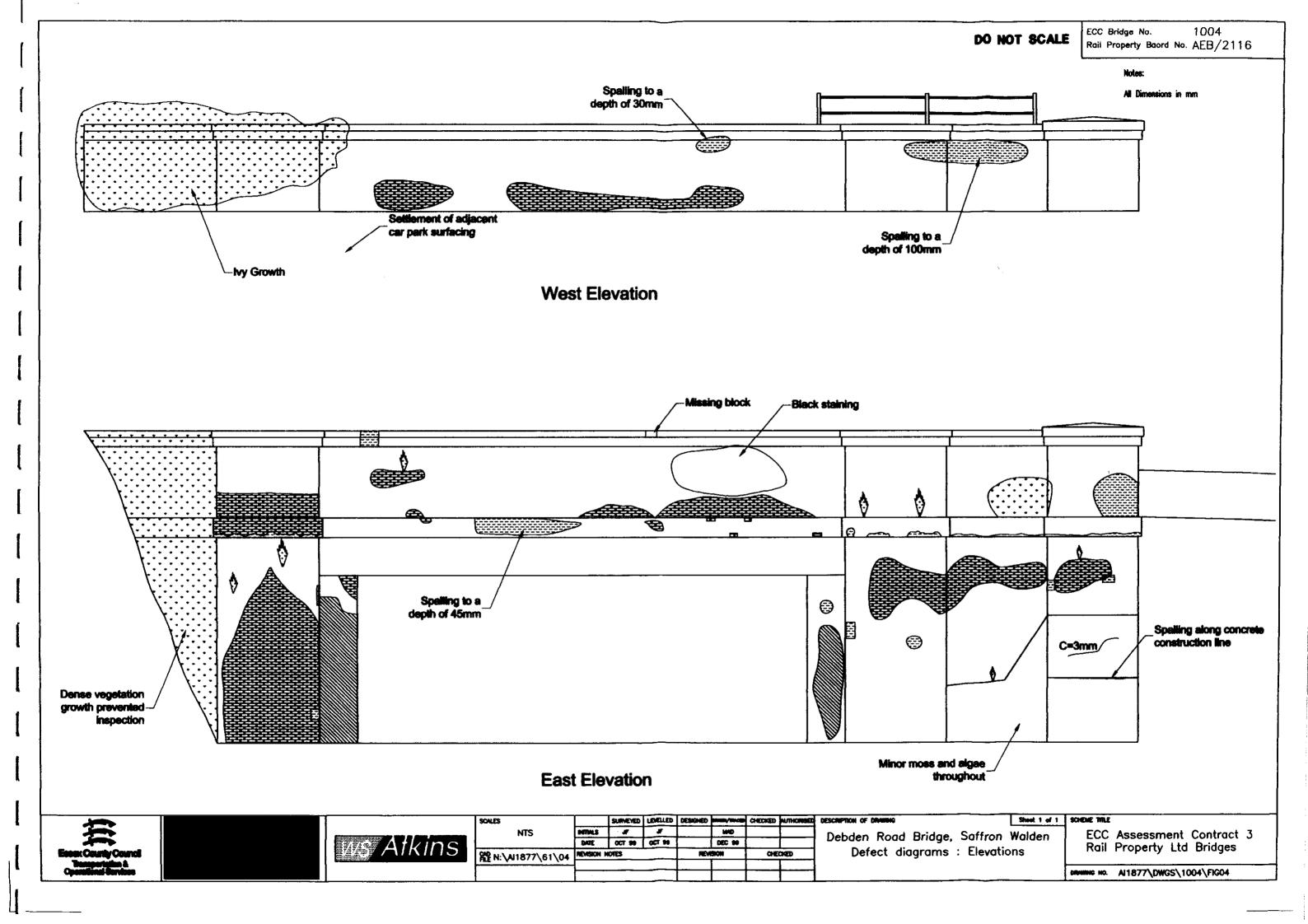
Notes

All Dimensions in mm

North Abutment

South Abutment

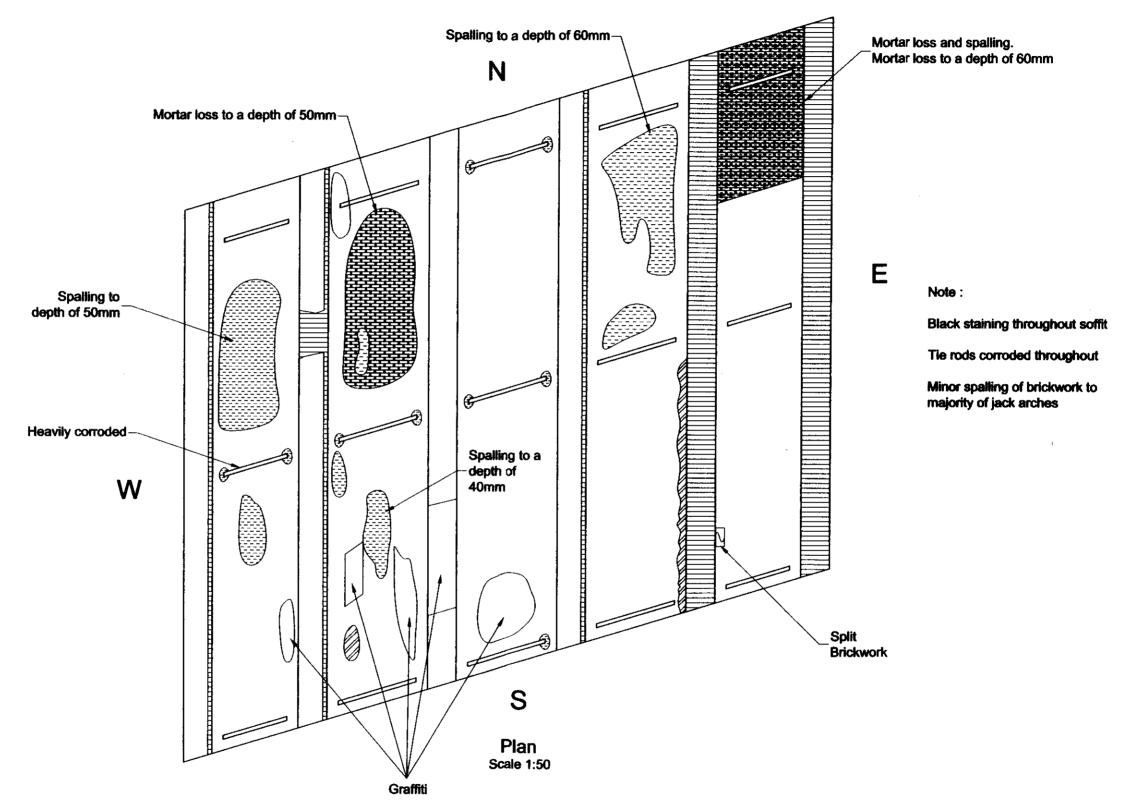



	SCATE2		SURVEYED	TEAETTED	DESIGNED		CHECKED	ALTHORISED	DESCRIPTION OF DRAWING
	NTS	INTRALS	#	¥		MAD			Dahdas Dass
Atkins		DATE	OCT 99	OCT 99		DEC 99			Debden Road
	MAN:\AI1877\61\02	REVISION N	IOTES		REV	SION	CHE	CXED	Defect d
	122 1 (11 (11 (11 (11 (11 (11 (11 (11 (1						L		

Debden Road Bridge, Saffron Walden Defect diagrams : abutments

Walden nts SOME THE ECC Assessment Contract 3
Rail Property Ltd Bridges

DRAMMG NO. A/1877\DWGS\1004\FIG02



DO NOT SCALE

ECC Bridge No.

1004 Rail Property Baord No. AEB/2166

Notes:

	SCALES		SURVEYED	TEAETTED	DESIGNED	DRAWN/TRACED	CHECKED	AUTHORISED	D
_	NTS	INTIALS	JF	JF		MAD			
		DATE	OCT 99	OCT 99		DEC 99			
	RE N:\Al1877\61\05	REVISION	NOTES		REV	ISION	CHE	CKED	
-	7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								

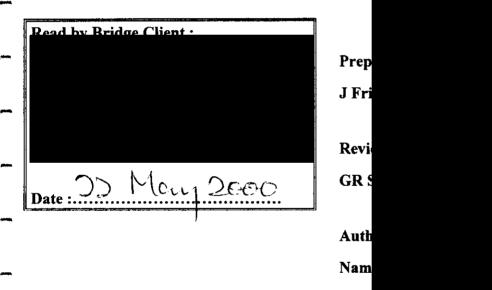
Debden Road Bridge, Saffron Walden Defect Diagram : Soffit

Sheet 1 of 1 SCHEME TITLE ECC Assessment Contract Rail Property Ltd Bridges

DRAWING NO. AI1877\DWGS\1004\FIG05

APPENDIX C

Statutory Undertakers


New Roads and Street Works Act (NRSWA) notices have been issued to the following companies. The responses are summarised below:

	Company	Service
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Anglian Water	Sewers along carriageway centreline.
	British Telecom	Cable in the east footway.
-	Cambridge Cable	Cable in the west footway.
_	Mercury Communications	No existing plant within the vicinity of the bridge.
	Telewest Communications	No existing plant within the vicinity of the bridge.
	Transco	No existing plant within the vicinity of the bridge.
, ,	British Gas	Pipe in northbound lane of the carriageway.
	Eastern Electricity	Cables in the carriageway and east footway.
	Essex & Suffolk Water Company	No existing plant within the vicinity of the bridge.
Allena	Thames Valley Water	Services in the both footways.
	Energis	No existing plant within the vicinity of the bridge
_	National Grid	No existing plant within the vicinity of the bridge.
	Serco Gulf Engineering	No existing plant within the vicinity of the bridge.
	Street lighting	No existing plant within the vicinity of the bridge.
	English Nature	No comment.
-	Environment Agency	No comment.

ESSEX COUNTY COUNCIL ASSESSMENT CONTRACT 3

ASSESSMENT REPORT FOR THE ASSESSMENT OF DEBDEN ROAD BRIDGE

ECC BRIDGE NO. 1004 RAIL PROPERTY Ltd BRIDGE NO. AEB/2116

Date: 30 /2 /00

ri

Date: 30/03/00

Date: 15/05/00

The Mice

Essex County Council Transportation and Operational Services Division County Hall Chelmsford

Essex CM1 1QH

Rail Property Ltd Room C5 Hudson House York YO1 6HP WS Atkins Consultants - Essex Threadneedle House 9 - 10 Market Road Chelmsford Essex CM1 1JQ

Copy No. 1 Version No. 1.0

Structure: Debden Road Bridge

Date: May-2000

Assessment Report Index

Section	Description	Page No.
	Executive Summary	
	Form BA	
	Form BAA	
1	Introduction	1
2	Conclusions of Inspection Report	2
3	Assessment Methods and Findings	3
4	Conclusions	5
	Appendix A Summary Results Table	
	Appendix B Assessment Calculations	
	Appendix C Approval in Principle and Inspection	
	for Assessment	

ECC Bridge No. 1004

Structure: Debden Road Bridge

Date: May-2000

EXECUTIVE SUMMARY

Debden Road Bridge, Saffron Walden has been assessed in accordance with the Approval in Principle dated 21 February 2000. This is situated in appendix C of this report.

The bridge is a single span structure comprising cast iron beams with brick jack arches and is supported on brickwork abutments. The clear square span is 7.375m and the bridge has a skew of 7°. The parapets are of brickwork construction with a steel post and rail height extension at the south end. The west elevation has been backfilled to carriageway level and now retains a car park for a new residential development. A wooden fence prevents access under the structure. There is presently a 22 tonne weight restriction on the structure.

Overall the structure is in fair condition.

The results for the main beams are based on a worst loaded strip analysis. The jack arches have been assessed using the ARCHIE computer programme, and the transverse tie rods assessed using the horizontal thrusts obtained from this ARCHIE analysis. The substructure and foundations have been assessed qualitatively.

OVERALL STRUCTURAL CAPACITY

DEAD LOAD ONLY

The load carrying capacity of the main structural elements is listed below.

Internal beams:

7.5 tonnes Assessment Live Loading

Edge beams:

7.5 tonnes Assessment Live Loading

Jack arches:

40 tonnes Assessment Live Loading

Tie Rods:

Dead Load Only

Sub-structures, foundations and wingwalls:

A qualitative assessment of the sub-structures, foundations and wingwalls indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment.

Strengthening Requirements

Replacement of the tie rods alone would result in an increase of capacity rating to 7.5 tonnes. Strengthening of the cast iron beams by bonding a steel or carbon fibre plate to the bottom flange would increase the overall capacity of the structure.

Consideration should be given to dismantling the structure and filling the resultant void. This option may be considered advantageous since the west elevation has already been backfilled

FORM 'BA' (BRIDGES)

GC/TP0356

Appendix: 5 Issue: 1 Revision: A Date: Feb 93

CERTIFICATION FOR ASSESSMENT CHECK

STRUCTURE / LINE NAME	DEBDEN ROAD BRIDGE	CATEGORY OF CHECK	(1
ELD COTOLIGE NO	A ED/0446		

ELR / STRUCTURE NO AEB/2116

I certify that reasonable professional skill and care have been used in the assessment of the above structure with a view to securing that:

- (1) It has been assessed in accordance with the Approval in Principle (where appropriate) as recorded on Form AA approved on 21 February 2000
- (2) It has been checked for compliance with the following principle British Standards, Codes of Practice, BR Technical notes and Assessment standards. (SEE TAS SCHEDULE IN AIP)

List any departures from the above and additional methods of criteria adopted, with reference and justification for their acceptance (commenting on the results if appropriate).

CATEGORY 1

NAME SIGNATURE

(ASSESSOR) 27 March 2000

(ASSESSMENT CHECKER) 27 March 2000

DIRECTOR OF THE FIRM OF CONSULTING ENGINEERS TO WHOM THE ASSESSOR / CHECKER IS RESPONSIBLE

27 March 2000

CATEGORY 2 AND 3 (NOTE: CATEGORY 1 CHECK MUST ALSO BE SIGNED)

ASSESSMENT

NAME

SIGNATURE

Not Applicable

(ASSESSOR)

DIRECTOR OF THE FIRM OF CONSULTING ENGINEERS TO WHOM THE ASSESSOR IS

RESPONSIBLE

(b) CHECK

NAME

SIGNATURE

Not Applicable

(ASSESSMENT CHECKER)

DIRECTOR OF THE FIRM OF CONSULTING ENGINEERS TO WHOM CHECKER IS

RESPONSIBLE

Group Standard

FORM 'BAA' (BRIDGES)

GC/TP0356

Appendix: 6 Issue: 1 Revision: A Date: Feb 93

CERTIFICATION FOR ASSESSMENT CHECK

NOTIFICATION OF ASSESSMENT CHECK								
STRUCTURE NAME / ROAD NO. D	EBDEN ROAD BE	RIDGE						
LINE NAME	(DISUSED)							
ELR CODE / STRUCTURE NO.	AEB/2116	ESSEX COUNTY COUNCIL No. 1004						
The above bridge has been assessed and checked in accordance with Standards which are listed on the appended Form BA. A summary of the results of the assessment in terms of capacity and restrictions is as follows:								
STATEMENT OF CAPACITY								
	DEAD LOAD 7.5 TONNES	ONLY (TIE RODS) (BEAMS)						
Critical member/s:	TIE RODS							
RECOMMENDED LOADING REST	RICTIONS							
With the transverse tie rods in th prevented from using the structure.	eir present condi	ition it is recommended that vehicular traffic be						
Based on the beam capacities it wor on the bridge.	uld be recommend	ded that a 7.5 tonnes weight restriction be imposed						
DESCRIPTION OF STRUCTURAL I	DEFICIENCIES A	ND RECOMMENDED STRENGTHENING						
The structure has inadequate capac highly corroded tie rods and the cast		ve loading due to insufficient tensile strength of the						
•	s by bonding a ste	n an increase of capacity rating to 7.5 tonnes. eel or carbon fibre plate to the bottom flange would						
Consideration should be given to dismantling the structure and filling the resultant void. This option may be considered advantageous since the west elevation has already been backfilled								
Name:		ructural Assessment Engineer						
Name		yil Engineer						
		6/2001						

Structure: Debden Road Bridge

Date: May-2000

1.0 INTRODUCTION

- 1.1 Essex County Council (ECC) entered into an agreement with Rail Property Ltd to assess Rail Property Ltd owned bridges carrying publicly maintainable highways. WS Atkins Consultants Ltd Essex (WSAE) have been appointed by ECC to carry out the visual inspections and assessments of the bridges.
- 1.2 An Approval in Principle document was submitted and approved on 21 February 2000. This includes a detailed inspection for assessment report. This assessment report should be read in conjunction with the Approval in Principle and Inspection for Assessment Report.
- 1.3 An inspection of the structure was carried out on 20 October 1999. The client supplied previous assessment data giving the cast iron beam details and some dimensions of the structure. The inspection included a visual inspection and dimension survey to confirm structural details. The weather was overcast and cold during the inspection. The results of the inspection are presented in the inspection for assessment report which forms part of the Approval in Principle dated 21 February 2000.
- 1.4 A summary of the inspection report findings are listed in section 2 of this assessment report. This includes details of the defects in the bridge which affect the load carrying assessment of the structure.
- 1.5 Debden Road Bridge carries an unclassified road over a dismantled railway line in Saffron Walden, Essex OS Ref. TL 53823 37896
- 1.6 The bridge is a single span structure comprising cast iron beams with brick jack arches and is supported on brickwork abutments. The clear square span is 7.375m and the bridge has a skew of 7°. The parapets are of brickwork construction with a steel post and rail height extension at the south end. The west elevation has been backfilled to carriageway level and now retains a car park for a new residential development. A wooden fence prevents access under the structure.
- 1.7 The carriageway is 5.08m wide with a 0.89m and 1.68m wide footway on the east and west side of carriageway respectively. The vertical alignment of the carriageway is a gentle hog curve and the horizontal alignment is straight.
- 1.8 There is a 22 tonnes weight restriction on the structure.
- 1.9 The speed limit across the structure is 30mph.

Structure: Debden Road Bridge

Date: May-2000

2.0 CONCLUSIONS OF INSPECTION REPORT

Details of the key dimensions of the structure are shown on drawings AI1877/DWGS/1004/FIG 01. These are included in the Approval in Principle document.

Details of the defects in the structure are shown on drawings AI1877/DWGS/1004/FIG 02 to FIG 05. These are situated in the inspection for assessment report which forms an appendix to the Approval in Principle.

The following is a summary of the defects listed in the inspection for assessment report.

- 2.1 Overall, the bridge is generally in fair condition, however the tie bars, which are severely corroded, and the brick jack arches, which have areas of ring separation, are in poor condition and require repair.
- 2.2 Based on this inspection and the recommendations of BA16/97 Annex D and BD 21/97 6.21, a condition factor F_c of 0.45 will be used for an ARCHIE analysis.
- 2.3 Based on the inspection, a condition factor F_{cm} of 1.0 would be appropriate for the assessment of the cast iron beams provided the actual beam section is used. The dimensions shown on the drawings included in the Approval in Principle for Assessment allow for any section loss due to corrosion.
- 2.4 No allowance need be made for the effects of jack arch ring separation as the observed defects were localized.
- 2.5 The tie rods should be analysed based on the corroded section properties stated in section 6.6 of the Inspection for Assessment report.
- 2.6 No other allowance need be made for the structural deterioration in the assessment calculations.
- 2.7 The weathered, eroded and missing areas of brickwork should be replaced or repaired. All cracking to structure should be monitored and repaired as necessary.
- 2.8 A more extensive hammer survey should be carried out to the jack arch barrels and, if necessary, repairs carried out
- 2.9 The corroded tie rods should be repaired and painted.
- 2.10 The abutments, wing walls and sub-structure show little signs of distress and are assumed to be in sound condition.

Structure: Debden Road Bridge

Date: May-2000

3.0 ASSESSMENT METHODS AND FINDINGS

3.1 The assessment of Debden Road Bridge, Saffron Walden has been carried out in accordance with the Approval in Principle dated 21 February 2000. The following drawings, included in the Approval in Principle document have been used.

AI1877/DWGS/1004/FIG 01

GA Elevation and Cross Section

3.2 The following assumptions have been made regarding material strengths.

Masonry Strengths

2.3N/mm2

Cast Iron Strengths:

154 N/mm2

Tension

Compression

46 N/mm2

3.3 Detailed results are situated in appendix A of this assessment report. Copies of the assessment calculations are situated in appendix B.

MAIN BEAMS

- 3.4 The main beams were assessed on a worst loading strip analysis. No transverse distribution was assumed. A condition factor of 1.0 was assumed for the beams and the actual section dimensions as measured on site were used. Increased section properties were adopted for live loading in accordance with BD 21/97 Clause 7.13.
- 3.5 Where the beams are positioned beneath the carriageway HA loading was used for live loading. For such cases the condition of the carriageway was taken as poor with low traffic flow (Lp). The beams beneath the footway were checked with the BD21/97 appendix D vehicles. The beams have been checked at ULS.
- 3.6 The main beams were assessed at 7.5 TONNES Assessment Live Loading.
- 3.7 In accordance with the AIP, since the beams are not able to withstand 40 tonne load effects no HB capacity has been determined.

EDGE BEAMS

- 3.8 The edge beams were assessed on a worst loading strip analysis. No transverse distribution was assumed. A condition factor of 1.0 was assumed for the beams and the actual section dimensions as measured on site were used. No increase in section properties were adopted for live loading (BD 21/97 Clause 7.13).
- 3.9 The edge beams were checked with the BD21/97 appendix D vehicles and have been checked at ULS.
- 3.10 The edge beams were assessed at 7.5 TONNES Assessment Live Loading.

Structure: Debden Road Bridge

Date: May-2000

JACK ARCHES

- 3.11 The jack arches have been analysed using the ARCHIE computer program.
- 3.12 The jack arches were assessed at 40 TONNES Assessment Live Loading.

TIE RODS

- 3.13 The transverse tie rods were analysed using the worst horizontal thrust lines obtained from the ARCHIE analysis of the jack arches. A condition factor of 1.0 was assumed for the tie rods and actual corroded section dimensions as measured on site were used
- 3.14 The tie rods were assessed at DEAD LOAD ONLY.

SUB-STRUCTURES, FOUNDATIONS, WINGWALLS

3.15 A qualitative assessment of the sub-structures, foundations and wingwalls indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment.

Structure: Debden Road Bridge

Date: May-2000

4.0 CONCLUSIONS

4.1 Debden Road Bridge, Saffron Walden has been assessed in accordance with the Approval in Principle dated 21 February 2000.

4.2 Results for the cast iron beams are based on simple beam-strip analysis. The jack arches were assessed using the ARCHIE computer program and the worst horizontal thrusts obtained from ARCHIE were used to analyse the tie rods. A summary of the results is listed below.

4.3 Super Structure

Internal Beams7.5 tonnesEdge Beams7.5 tonnesJack Arches40 tonnes

Tie Rods Dead load only

Parapets The parapets do not conform to current standards and have not

4.4 Sub-structures, foundations and wing walls

A qualitative assessment of the sub-structures, foundations and wing walls indicate that they are adequate to carry the present traffic loading. According to Clause 8.5 of BD21/97, they may be assumed to be adequate for 40 Tonne assessment loading without further assessment.

4.5 The inspection for assessment showed that the structure requires general minor maintenance as well as high priority repairs to the tie bars and the jack arches. Details are included in section 7 of the inspection report.

been assessed.

4.6 Strengthening Requirements

Replacement of the tie rods alone would result in an increase of capacity rating to 7.5 tonnes. Strengthening of the cast iron beams by bonding a steel or carbon fibre plate to the bottom flange would increase the overall capacity of the structure.

Consideration should be given to dismantling the structure and filling the resultant void. This option may be considered advantageous since the west elevation has already been backfilled

Structure: Debden Road Bridge

Date: May-2000

APPENDIX A

SUMMARY RESULTS TABLES

Structure: Debden Road Bridge

Date: May-2000

Analysis Results: Internal Cast Iron Beams - Beam Strip Analysis.

Component Name	Internal Beams	Internal Beams	Internal Beams
Section Location	At Midspan	At Midspan	At Support
Type of Effect	Compressive Stress due to Bending / Nmm ⁻²	Tensile Stress due to Bending / Nmm ⁻²	Shear Stress / Nmm ⁻²
Allowable Dead + Live Load Stress	154.0	46.0	46.0
Permanent Load Effects	51.8	32.2	6.5
Allowable Live Load Stress	102.2	13.8	39.5
Adjusted Permissible Live Load Stress (In accordance with BD21/97 Cl 4.10)	102.2	10.4	21.7
Adjusted HA Live Load Effects	35.5	22.1	8.2
C factor	>1	0.47	>1
Accidental Wheel Load	N/A	N/A	N/A
Single Axle/Wheel Loading	HA Critical	HA Critical	HA Critical
PASS/FAIL	PASS	FAIL	PASS

Assessment LL Rating	40 tonnes	7.5 tonnes	40 tonnes	
45 Units HB Effect				
Associated LL Effect				
HB Rating				

Comments

- Assumed Low Traffic Flow
- Road surface category Poor
- A condition factor of 1.0 was assumed for the beams and the actual section dimensions as measured on site were
 used
- Jack Arches were found to be adequate for 40 tonnes Assessment Live Loading
- Tie Rods were found to have a capacity rating of DEAD LOAD ONLY based on the horizontal thrusts obtained from the Jack Arch ARCHIE analysis

Structure: Debden Road Bridge

Date: May-2000

Analysis Results: Cast Iron Edge Beams - Beam Strip Analysis.

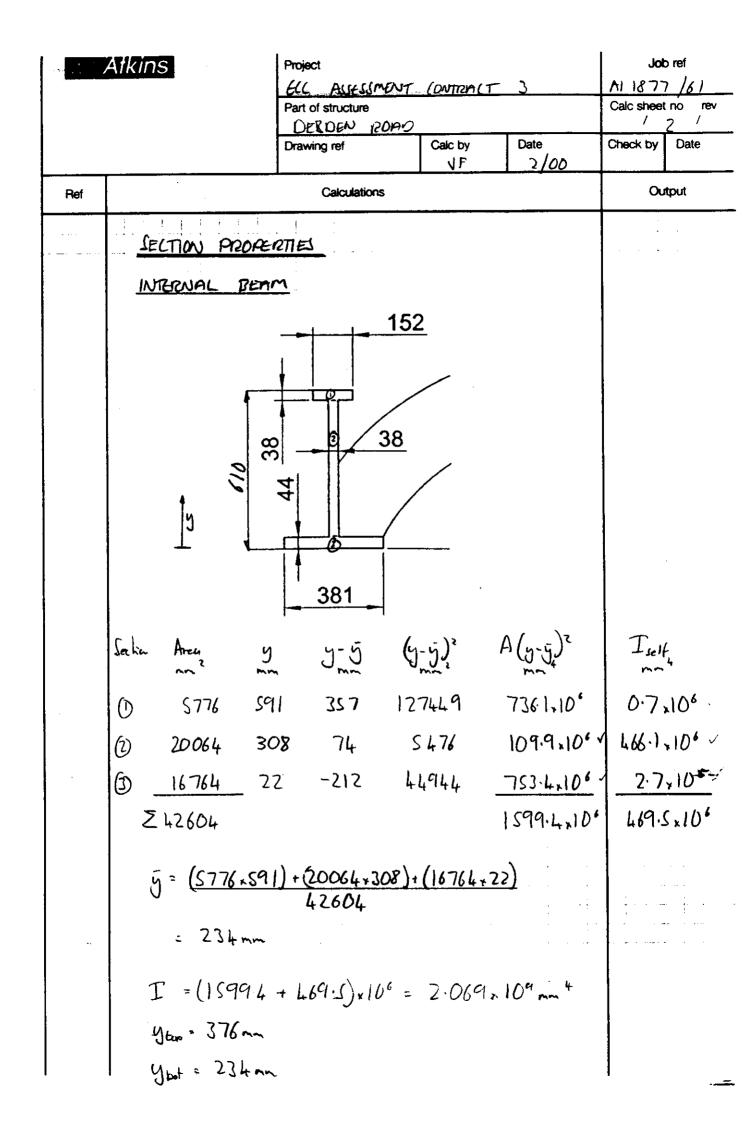
Component Name	Edge Beams	Edge Beams	Edge Beams
Section Location	At Midspan	At Midspan	At Support
Type of Effect	Compressive Stress due to Bending / Nmm ⁻²	Tensile Stress due to Bending / Nmm ⁻²	Shear Stress / Nmm ⁻²
Allowable Dead + Live Load Stress	154.0	46.0	46.0
Permanent Load Effects	35.3	27.0	5.9
Allowable Live Load Stress	118.7	19.0	40.1
Adjusted Permissible Live Load Stress (In accordance with BD21/97 Cl 4.10)	118.7	12.7	22.0
Adjusted HA Live Load Effects	N/A	N/A	N/A
C factor	N/A	N/A	N/A
Accidental Wheel Load	RE 17t = 24.4 RF 7.5t = 13.7	RE 17t = 18.6 RF 7.5t = 10.4	Ec3 40t = 12.6
Single Axle/Wheel Loading	N/A	N/A	N/A
PASS/FAIL	RE 17t – PASS RF 7.5t – PASS	RE 17t – FAIL RF 7.5t – PASS	Ec3 40t - PASS

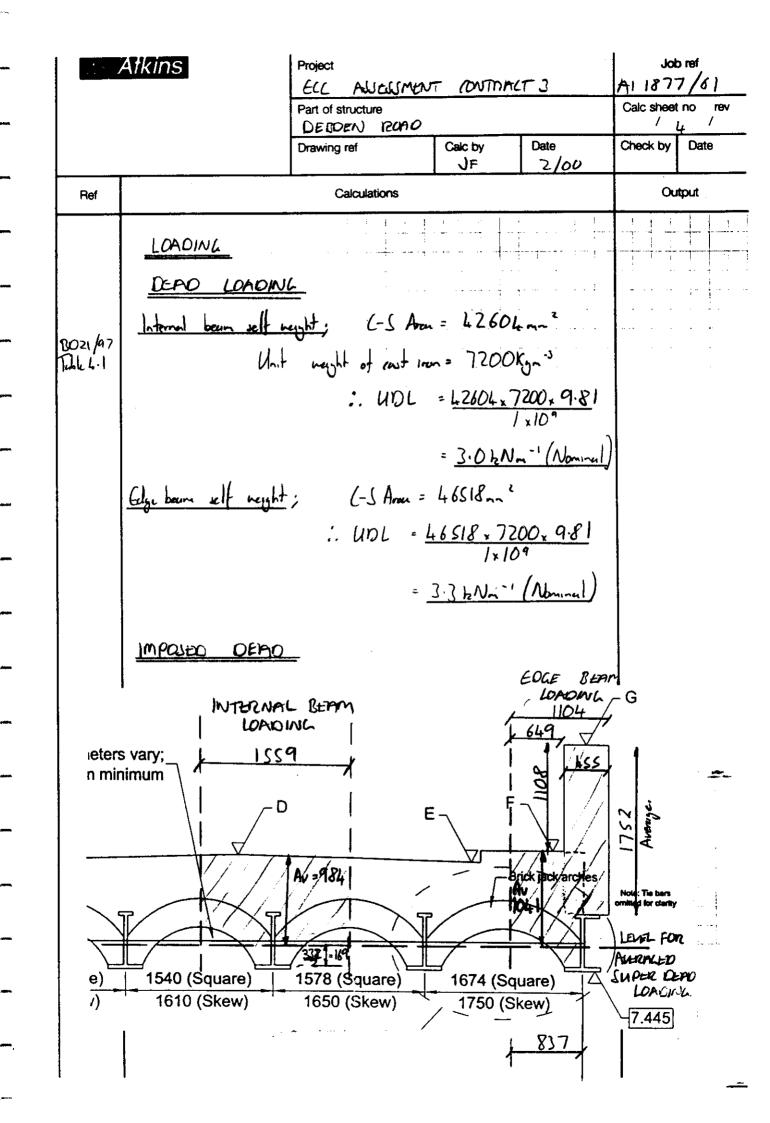
Assessment LL Rating	40 tonnes	7.5 tonnes	40 tonnes	
45 Units HB Effect				
Associated LL Effect				
HB Rating				

Comments

- Assumed Low Traffic Flow
- Road surface category Poor
- A condition factor of 1.0 was assumed for the beams and the actual section dimensions as measured on site were
 used
- Jack Arches were found to be adequate for 40 tonnes Assessment Live Loading
- Tie Rods were found to have a capacity rating of DEAD LOAD ONLY based on the horizontal thrusts obtained from the Jack Arch ARCHIE analysis

Structure: Debden Road Bridge

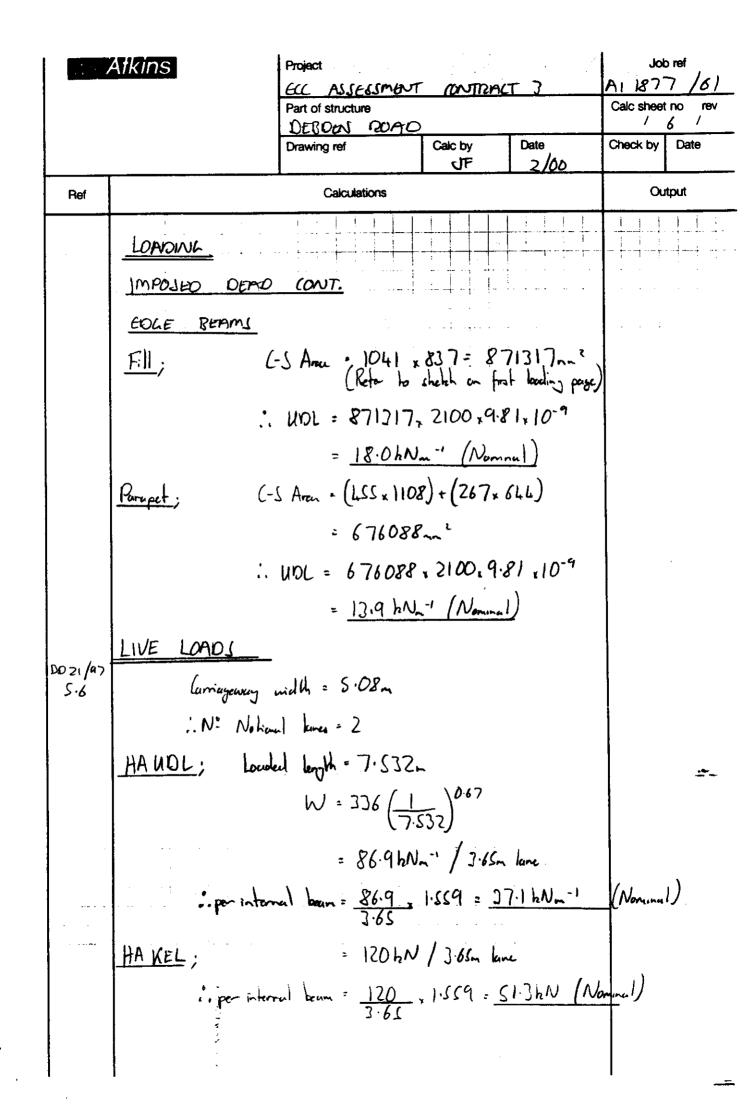

Date: May-2000

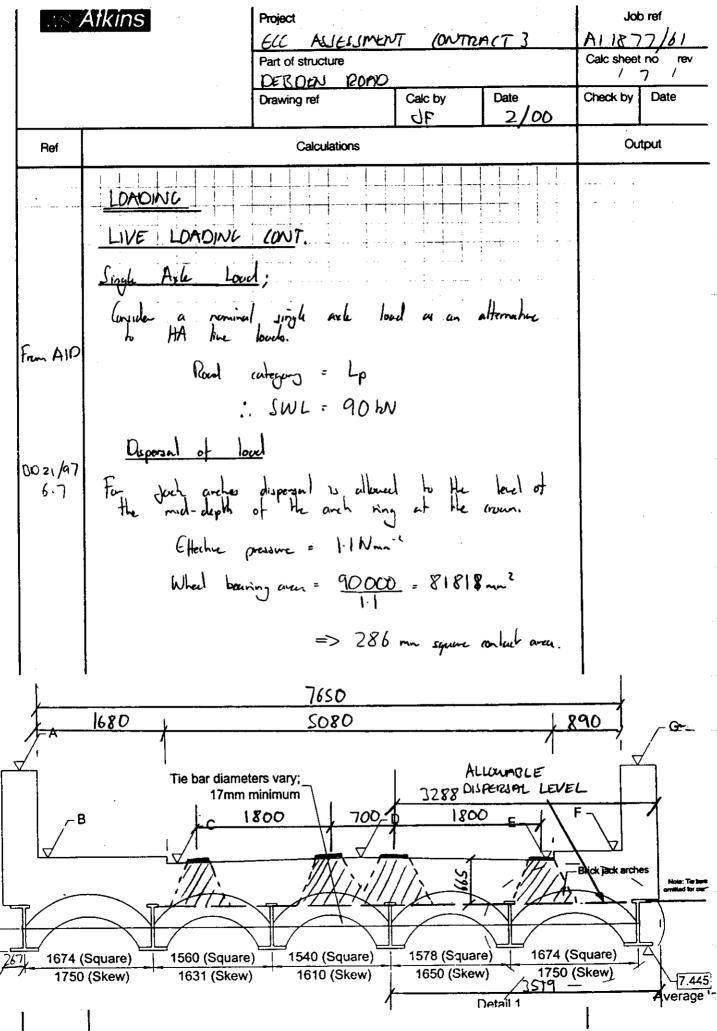

APPENDIX B

ASSESSMENT CALCULATIONS

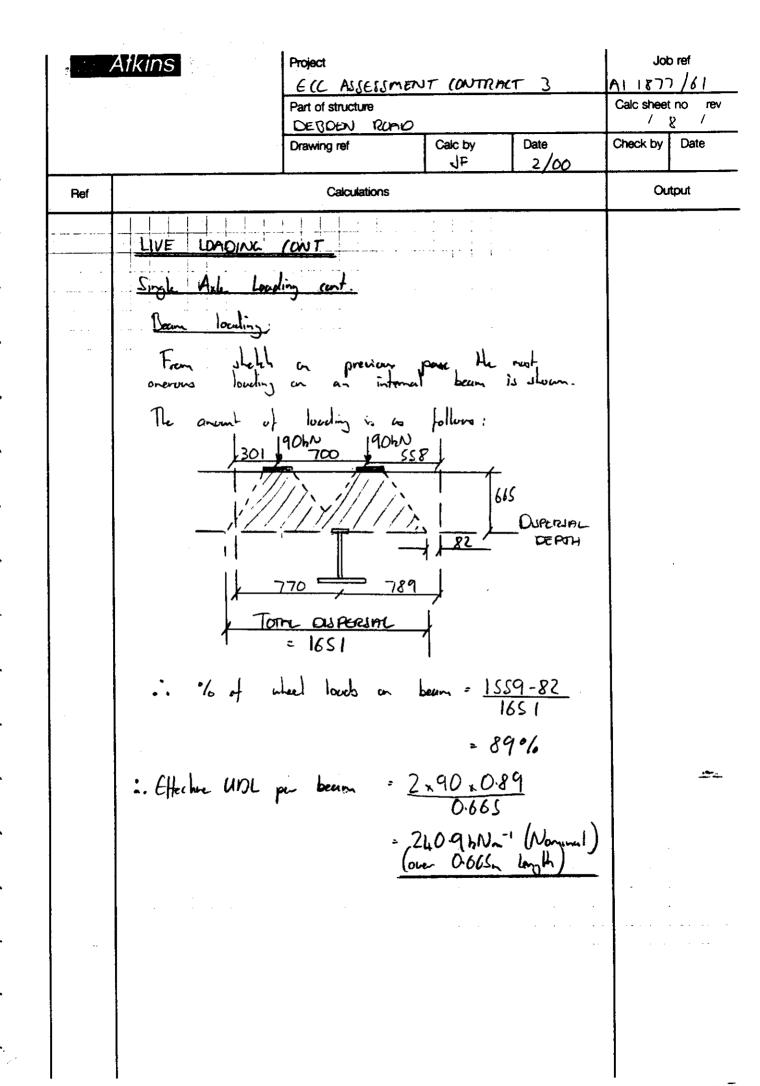
PROJECT CCC ASESTMENT CONTRACT 3 SI SIGNED D = Data ** FILE NAME FILE NO AT 8 7 7 - 6 - INDEX NO CALCULATION/SKETCH/DATA ORIGINATOR DAT SECTION PROPERTIES 4-11 LOAD/ING 12-20 BEAM PAMENTIN 21 BEAM (NONCITY) 22-25 INTERNAL BEAM - STREW CHECK JF 2/ 26-29 EOCE BEAM - STREW CHECK JF 2/ 30-31 TIE DAY ASSISSMENT C=CBSIGNETIM D = CASISMENT D = Data ** Si Similia D = Data ** Data ** D = Data **	WS/Atkin	S CALCULATION INDEX		
FILE NAME DERDEN RUNCE Page			C	
FILE NAME DERDEN ROWN BRIDGE FILE NO ATI 8 7 7 - 6	PROJECT		C≔ Galculation S≔ Skerolate D = Data	
INDEX NO CALCULATION/SKETCH/DATA Jummary	FILE NAME			
Jummany	FILE NO	A1 1 8 7 7 - 6 1 -		
2-) SELTION PROPERTIES JF 2/ 14-11 LOADING JF 2/ 12-20 BEAM ANNUALS JF 2/ 21 BEAM (NONCITY) UF 2/ 22-25 INTERNAL BEAM - STRESS CHECK JF 2/ 26-29 EOGE BEAM - STRESS CHECK JF 2/ 30-31 TIE BAR ASSESSMENT UF 2/	INDEX NO C	ALCULATION/SKETCH/DATA	5,450,7	DATE
4-11 LOADING JF 2/ 12-20 BEAM ANNLYSH JF 2/ 21 BEAM (MONCITY) UF 2/ 22-25 INTERNAL BEAM - STRESS CHECK JF 2/ 26-29 EOGE BEAM - STRESS CHECK JF 2/ 30-31 TIE BAR ASSESSMENT UF 2/	1	Summarry		2/00
12-20 BEAM PANNEYS JF 2/ 21 BEAM (NONCITY) 22-25 INTERNAL BEAM - STRESS CHECK JF 2/ 26-29 EOGE BEAM - STRESS CHECK JF 2/ 30-31 TIE BAR ASSESSMENT JF 2/	2-)	SECTION PROPERTIES		2/00
12-20 BEAM ANALYSIN 21 BEAM (MANCITY) 22-25 INTERNAL BEAM - STRESS CHECK 26-29 GOGE BEAM - STRESS CHECK 30-31 TIE BAR ASSESSMENT UF 2/	4-11			2/00
21 BEAM (MONCITY) 22-25 INTERNAL BEAM - STREEL CHECK 26-29 EOGE BEAM - STREEL CHECK JF 2/ 30-31 TIE BAR ASSISSMENT UF 2/		BEAM AMPLYIN		2/00
26-29 EORE BEAM-STREW CHECK UP 2/ 30-31 TIE BAR ASSESSMENT UP 2/			<u>JF</u>	2/00
26-29 EOCE BEAM - STREW CHECK UP 2/ 30-31 TIE BAR ASSESSMENT UP 2/	22 - 25	INTERNAL BERM - STREW CHELK	Jf Jf	2/00
30-31 TIE BAR ASSESSMENT UF 2/		EOCE BEAM - STREEL CHECK		2/00
JZ-35 ARCHIE AMECHU DADA	30-31			2/00
		ARCHIE ANNEYSU DATA	عل ا	2/00
				ļ
				٠
				<u> </u>
				<u> </u>
				_
		· · · · · · · · · · · · · · · · · · ·		
		The state of the s		

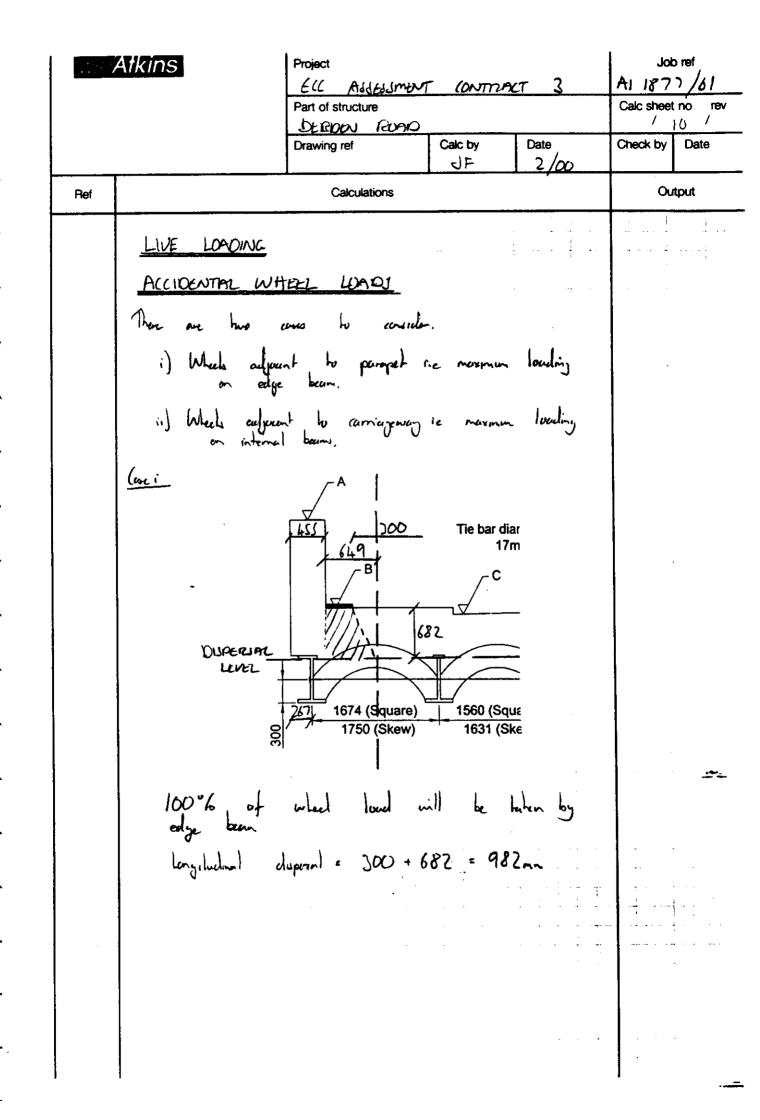
Continued on Sheet				<u> </u>

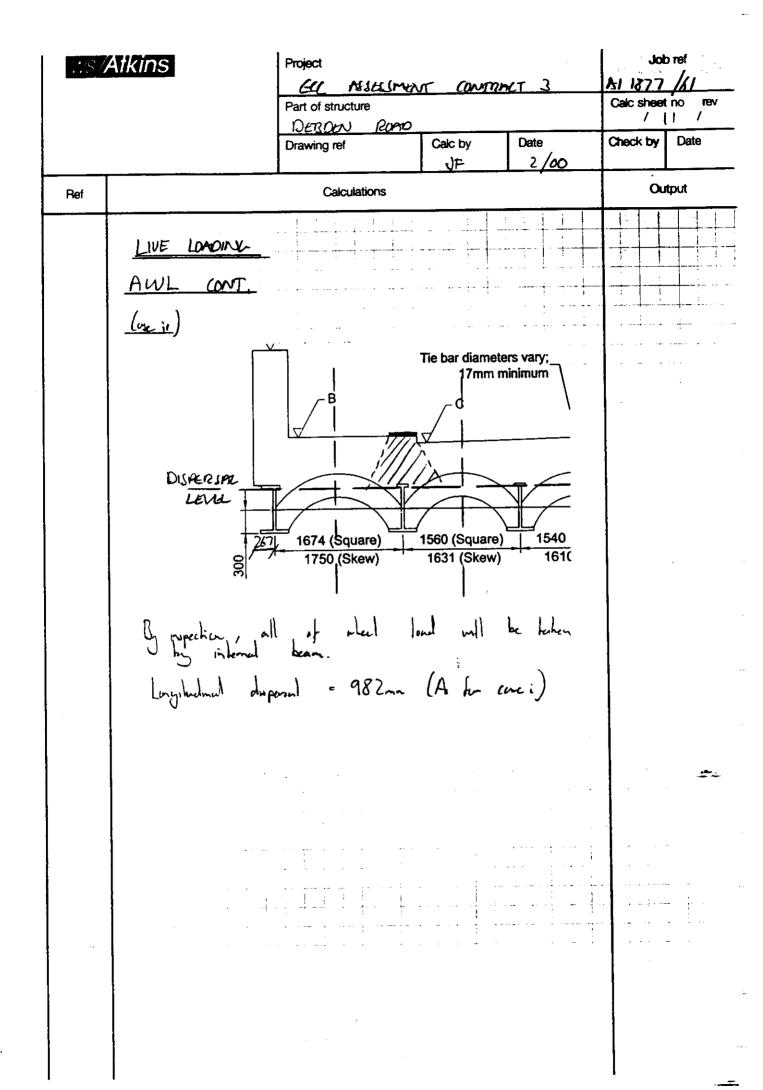

	ECC ASSESEMENT CONTRACT 3 Part of structure DEROW ROAP			P1 (877 / Calc sheet no		
-		Drawing ref	Calc by	Date 2/00	Check by	Da
Ref		Calculations			Ou	tput
	Summary					
	INTERNAL BEDMS		Сария			
	H	A	7.59	CHART		
		1 L	>7.5 9	DNN EJ		
	Shear:	6	١ ٨ ٦	7a ta 12~1		
	H	A L	μο π			
		1 L	40 T	00/02/		
	Bonday:		Paus			
		. (. Pau			
	17T A		Yes			
	Shew;	IW L	<i>[63</i>			
	LOT A	M	Yes			
!	dreu Archer.		40 honn	5		
	TIE ROOJ		Otao Lono	- -		
	· · · · · · · · · · · · · · · · · · ·				22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	•

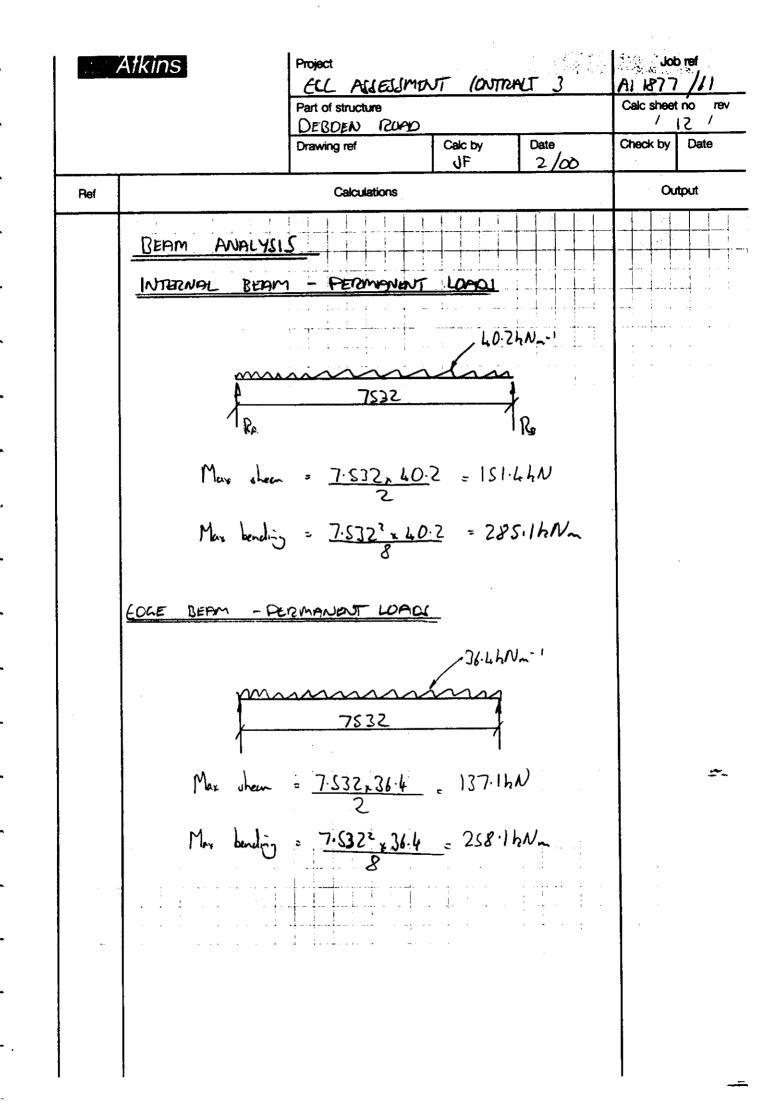


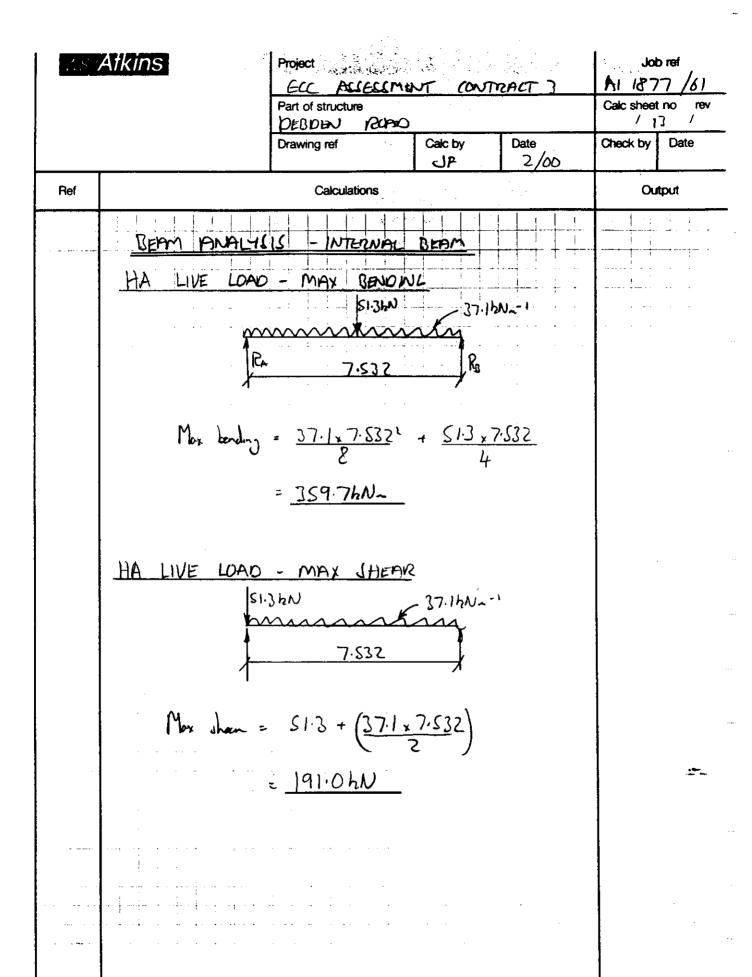
	Atkins	Project ECC ASSESSMENT CONTRACT 3 Part of structure			A1 1877 /61 Calc sheet no rev	
		DEDOEN RO	Calc by	Date 2/00	Check by	Date
Ref		Calculations		1 9/3	Q.	rtput
	Fill; Assumed	calculating imposed pour quality line monty. - Width of dech (-S Area = 1 - WOL = 1 - 3. depth of till = 98 (-J Area = 98 unit density = 2 ; UDL = 153	on beam = 1 surfacing. 00 x 1559 = 55900 x 2400 76Nn-1 (N) 14 x 1559 = 100 Kgn-3	SS9~~ 1SS900~ > 9.81×10-9 Minul) 1S34056~ × 9.81×10-9		
. ••	Flowing surfaceing;	Assure top SOm C-S Aren = 649 : UDL = 12450 : 0.8 H	×50 = 324	SOm-2 81.10-1		

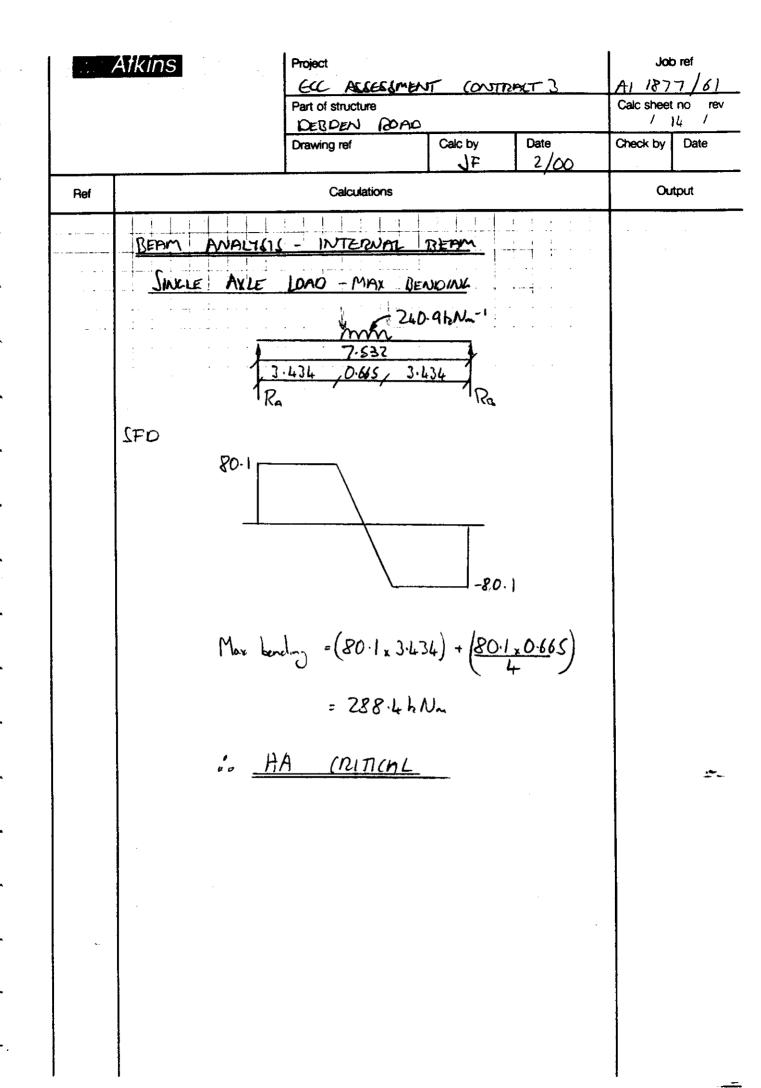

.


SAL-042 Rev 1 Dec. 89

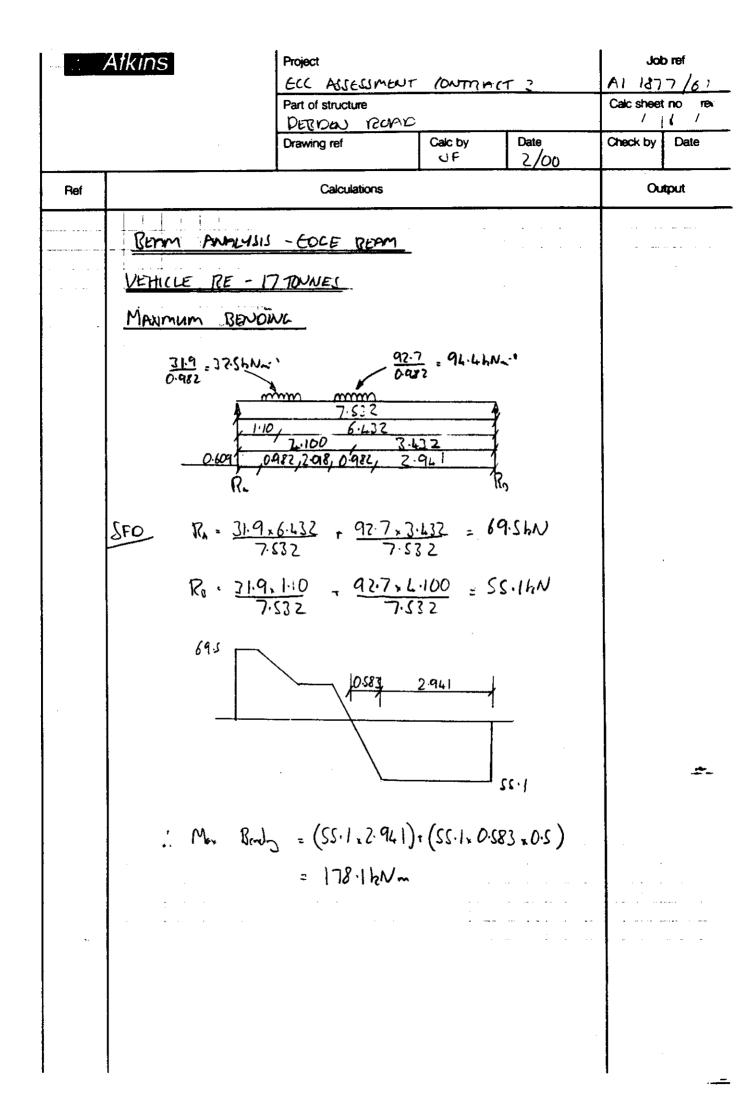


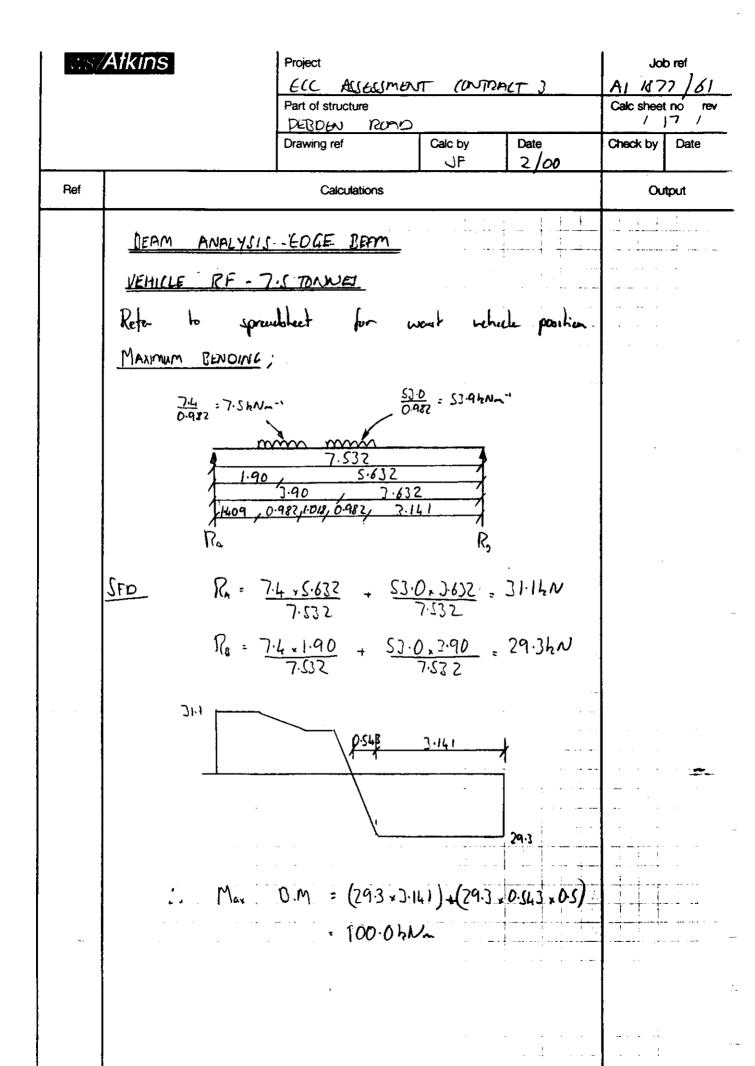

AL-042 Hev 1 Dec.


Total decid on internal beam = 40.212Nm-1



SAL-042 Rev 1 UBC. 8




AL-042 Rev 1 Dec. 89

AL - U42 Hey 1 Uec. 89

Al -D42 Rev 1 Dec. R

..... 1 WAY 1 WW.

WS Atkins

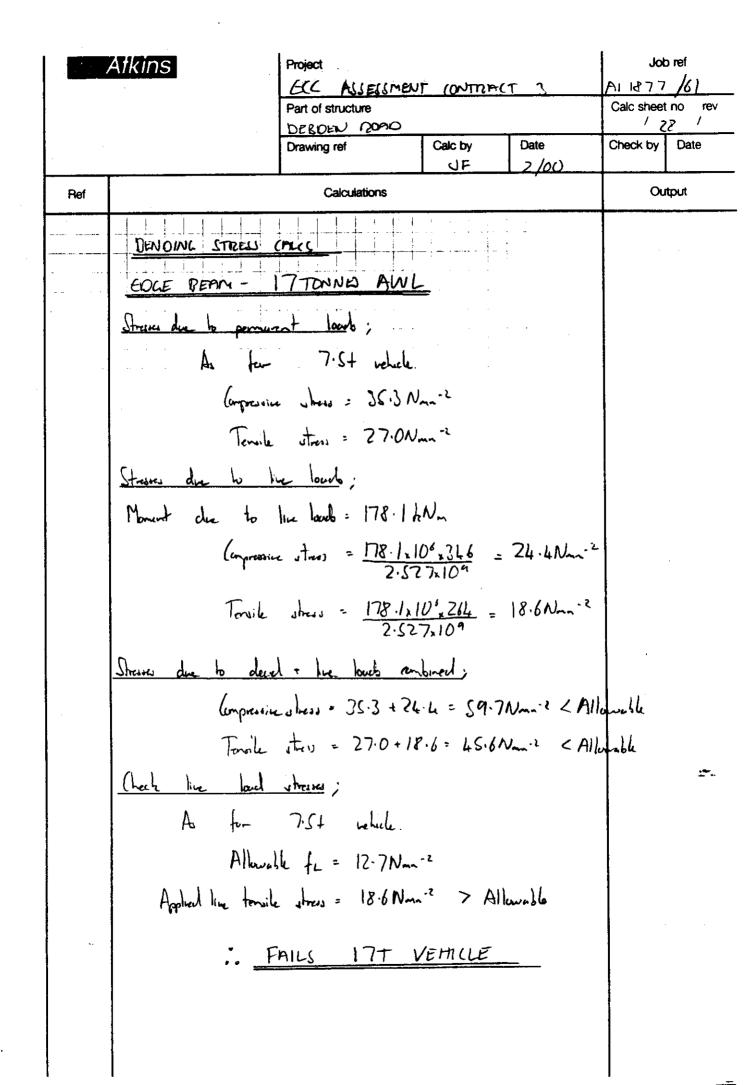
Vehicle	W1 (t,kN)	X2 (m)	W2 (t,kN)	X3 (m)	W3 (t,kN)	X4 (m)	W4 (t,kN)	X5 (m)	W5 (t,kN)	X6 (m)	W6 (t,kN)	GVW (t,kN)	Σ X (m)
1.7	,	·										17	3
impact (γ _{ιι})	199		S. P. 18		1000-121		74.31						
(inc γ _k)	63.765		185.409	_	0	0	0	0	0	0	C	249.174	3
*												 	
* *Note: The	se axies are	interchan	reable to d	etermine t	he most ad	verse effec	t					<u> </u>	
HOLE. THE	W1	W2	W3	W4	W5	W6	l l						
		<u> </u>											
	₩	•	▼	*	▼	▼							
	A					•							
	4		spa	<u>n</u>									
F	₹1		7.5			R2							
	→ Z	distance o	f first whee	load from	upport R1	database h	andled) in	metres					
ENE COLUE			AVE DIA	ZED	-VE BM	ZED	SHEAR					<u> </u>	
RESULT			+VE BM		-AE BM		1			<u> </u>			
note: look to	tables for fu	ull picture of			Company of the American Company of the Company of t						<u></u>		
		<u> </u>	Ĭ										

WS Atkins

Vehicle	W1 (t,kN)	X2 (m)	W2 (t,kN)	X3 (m)	W3 (t,kN)	X4 (m)	W4 (t,kN)	X5 (m)	W5 (t,kN)	X6 (m)	W6 (t,kN)	GVW (t,kN)	Σ X (m)
												7.5	2
impact (γ _{if})	- 34		1.8		1 Jan 1		4						
(inc γ _{if})	14.715	2	105.948	0	0	0	0	0	0	0	0	120.663	2
*													
* 							<u> </u>						
*Note: Thes	se axles are						<u> </u>			t			
	W1	W2	W3	W4	W5	W6							
					<u></u>	<u> </u>			1				
	₩			<u> </u>	V	V	İi						
	†					1							
	4		spa	및									
R	1			沙川外常经		R2		,					110-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
. (7 =	distance o	f first wheel	load from s	support R1	 (database h	andled) in i	netres					
							,		1				
RESULT						ZED	SHEAR						
			***2]278	等种 作90	建 0.00	~~20.00	3-2116124						
note: look to	tables for ful	I picture of	shear acro	ss deck									
												7.	

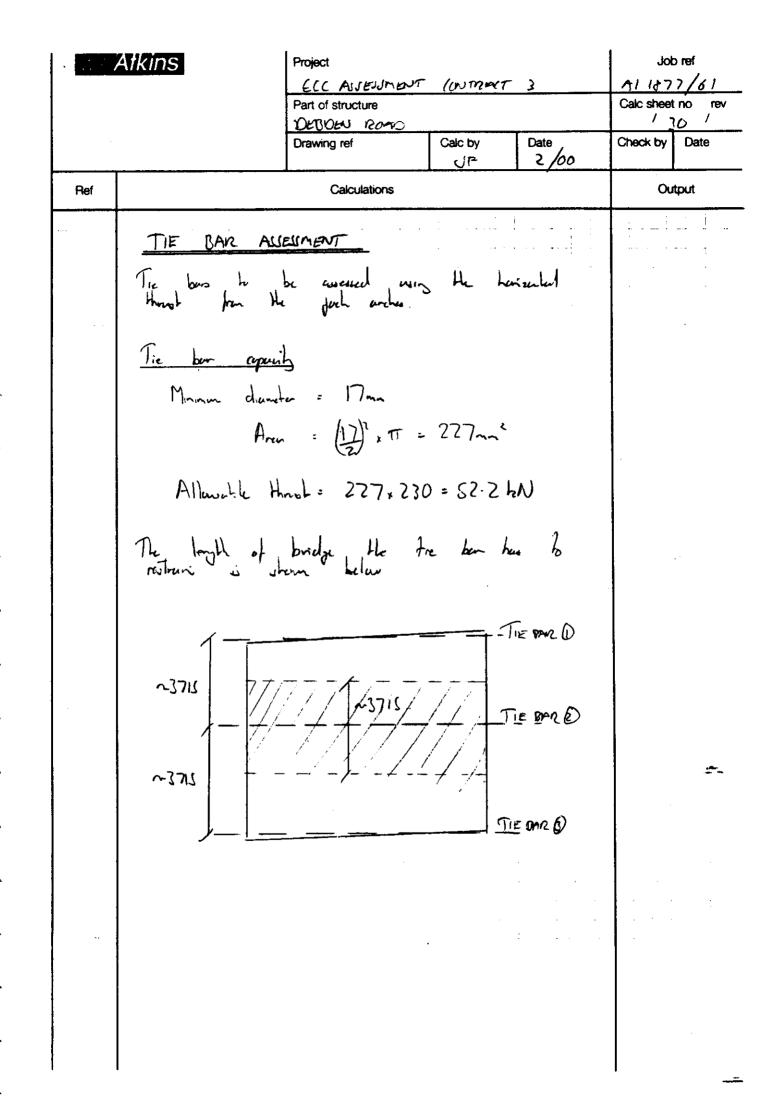
WS Atkins

Vehicle	W1 (t,kN)	X2 (m)	W2 (t,kN)	X3 (m)	W3 (t,kN)		W4 (t,kN)		W5 (t,kN)			GVW (t,kN)	Σ X (m)
Ec3-a	2-1-20		304 ant 505	m (24)8	7.50	3	Acres 7	2.8 Care	8 1 M 10 0 1	2400		40	11.
impact (γ _{if})		,	STARKE ST		********** *		35,641		""滑艇		AND COM		
(inc γ _W)	68.67	3.9			73.575	3	68.67	2.8	68.67		0	482.652	11
*													
*			L			L	<u> </u>						
*Note: The	se axles are	interchang	geable to d	etermine t	he most ad	verse effec	et ee						
	W1	W2	W3	W4	W5	W6							
					<u> </u>								
l	V	<u> </u>	V.	<u> </u>	V	<u> </u>						<u> </u>	
	A					1						1.4	
	4		<u>spa</u>	<u>r</u>] ———		.							L
R			** A7.5	到表表		R2							
											,		
· · · · · · · · · · · · · · · · · · ·	•	distance o	f first wheel	load from	upport R1	database n	andled) in	metres				ļ	
							<u> </u>						
RESULT				ZED	-VE BM	ZED	SHEAR				<u>.</u>		
			474/19	基度 030	00.03建长	20,00	£2291:85				٠.	- ;	
note: look to	tables for fu	Il picture of	shear acro	ss deck									<u>-</u>
						Į			1			₹	


	ATKINS	Project CC ASSESS Part of structure DEBDEN YOUNG	MENT CONTO	nct 3	Pat 187	
		Drawing ref	Calc by	Date 2 / 00	Check by	Date
Ref		Calculations		1 2/00	Ou	tput
DD21/A7	DEAM CAPACIT		be avened		: . :	
7.13	permissible atress The section much loveling by the	berso.		- luc)		
	provides that: i) Lindos one		homb embe	dded	Internal bean	Edge bear X
	ii) No services un rendered b	bert is a 6 wester ruing authoreur, it is small to effect				V
4.10	Morinum compressive permurat or comb					<u> </u>
	Maximum benik st. permunent an cambina			l +		
	In addition, for the live load given in table	til.	represent loved	the verlee		

WSAL-042 Rev 1 Dec. 89

··· ••							
-		Atkins	Project			Job	_
			Part of structure	(ONTOAL	7 3	A) 1877 Calc sheet	· · · · · · · · · · · · · · · · · · ·
			DERDEN POUR	0		/ 2	
			Drawing ref	Calc by	Date	Check by	Date
f	Ref		Calculations	JF_	2/00	Out	tput
ŀ		0					
		BENDING STREET		; 	1		
		INTERNAL BER					
		ii) Comporessur veile					
			fL = - 43.9 + (0.79 x	•			
		on	fe = -81.3+ (3.15 x	-81.8) = 24	4. SNm		
		. Alburde	fu = 154 Nmm -2				
			www.spess = 35.5Nm	"·≀ < A	Ilwalk.		
		10 - 1 000			-		
		: TENSION	CRITICAL - ADO	PT 7.570	NUEL		
				•			
						: 	
							<u></u>
						;	
							. <u></u> =
							


: Atkins	Part of structure	NEWY (UNTRA	ест Э	Al 1877 Calc shee	/ 6 / t no re	
	Drawing ref	Calc by	Date 2/00	Check by	Date	
Ref	Calculations		1 2/00	a	Output	
Moment due to	-7.ST AWL permenent locals = I = 2 Yhrs =	258.1 kNm 2.827x10 ² nm ⁴ 346nn 264nn 58.1x10 ⁴ x346 2527x10 ²	= 35.3Nm~			
Stresses du La La Stresses du La Com	phicable to un o live locals. o live locals. Compressive about = 11 Terrile stress = 11 decel + his love pressive ations = 35.	100.0hn 00.0.10° +346 2.527.10° 00.0.10° + 264 2.527.10° de contrad 3 + 13.7 = 49N	=13.7N~~ =10.4N~~ 	muble .		

WSAL-LAZ HBY 1 DEC BS

1187	Afkins Project	Jol	o ref
	ECC ASSESSMENT CONTRACT 3	A1 187	7/61
	Part of structure	Calc sheet	
	DESIDEN ROPPO Drawing ref Calc by Date	Check by	Date
	JI= 2/00	O'leck by	Date
Ref	Calculations	Ou	tput
	SHEAR STRESS CALCS		,
	EOCE BEAM -40T AWL		
	Sheen due to permerrent loudo = 137.1 kN Web Areer = 23180m²		
	Shear atrees: $\frac{137.1\times10^3}{23180} = 5.9N_{m}^{-3}$		
	Show stress du to luc local;		
	Shear due lu live loads = 2919kN		
	Shear others = 291.9×103 = 12.6 Nm.		
	Them show due to combined doud + live louds;		
	= 5.9+12.6=18.5 Nm-2 <	Allowate	4 :.0
:	Check her loved straves		
	line local whear crets in the same sense as the		
	: g - 24-6- (0.44 x 5.9)		
	= 27.0Nmn ⁻²		
	Applied live load steen = 12.6 Nm. 2 < 22.0 Nm. 2		
	: ADEQUATE FOR 40 TOWNES		
,			٠

WSAL-042 Rev 1 Dec. 89

Ref

Output

Method of aucument;

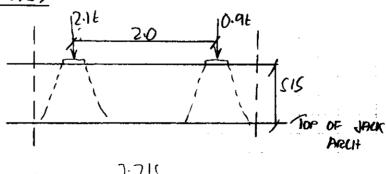
Wing APRITIE, obtain the herizabel thrust po-metre on the following boris.

Calculations

Adopt a lane midth of the tre bour ratehnest width is 3.715m

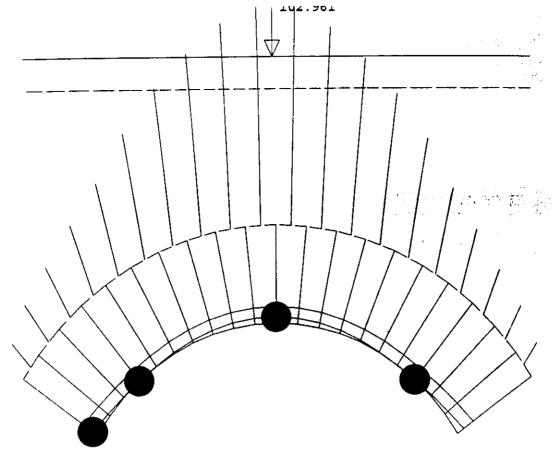
Apply on 11-St axk to the lane width adapting youth onch directions your on releasingtion change. Position only at contract of orch to obtain nominal torizontal throat.

Refer to APRILITE output;


For 11.St axle, poxinim hairalal thout = 63hN/m

.. Hursulal throat pe- tie = 63.0, 3.76 = 234 kN

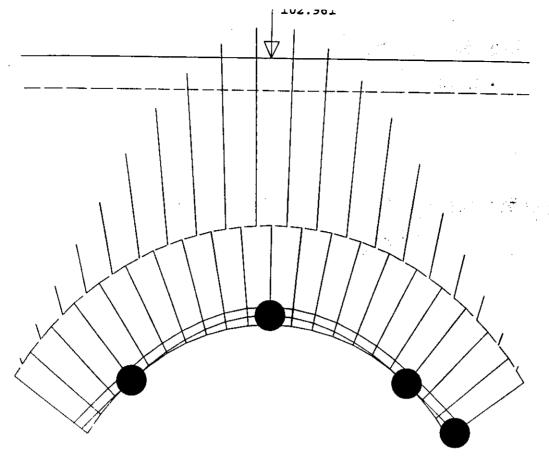
Mozimm tonnege the ben ran maint;


SZ-2 , 11.5 = 2.6 honnes

For 3+ orle;

3.715

! INADEQUATE CAPACITY FOR IT



Tiebarck

() Span Depth of fill Ring depth Position of backing	1223 mm 515 mm 303 mm 0	Rise Depth of surfacing Ring depth factor Depth of mortar loss	338 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	2.3 N/mm^2
Load Lane width	Single Axl	e:11.5t at 600	
Required ring depth H Left V Left Comp. zone at hinge 2	66 mm 61 kN/m 69 kN/m 39 mm		4.58 63 kN/m 67 kN/m .3
Hinges 1 AT 1 2	AT 4	3 AT 11	4 AT 18

Param (m	a).segmen					
	Stone		Horizontal			
	Weight	Dead Load	Deadload			Pass Press
1	5	9	.7	3		.3
2	6	-1.2	.7	8	.3	. 5
3	6	-1.2	. 6	-1.6	. 5	. 4
4	6	-1.2	. 4	-2.7	.7	.3
5	6	-1.1	. 4	-4	. 8	.2
6	6	-1.1	.3	-5.8	1	.1
7	6	-1.1	.2	-7.5	. 9	0
8	6	-1.1	.1	-8.9	. 8	0
9	6	-1.1	.1	-10.2	. 5	0
10	6	-1.1	0	-10.9	. 2	0
11	6	-1.1	0	-10.8	2	0
12	6	-1.1	1	-10	5	0
13	6	-1.1	1	-8.6	8	0
14	6	-1.1	2	-7.1	8	0
15	6	-1.1	3	-5.4	9	0
16	6	-1.1	4	-3.6	8	0
17	6	-1.2	4	-2.3	6	0
18	6	-1.2	6	-1.3	4	0
19	6	-1.2	7	7	3	0
20	 5	9	7	2	1	0

_=

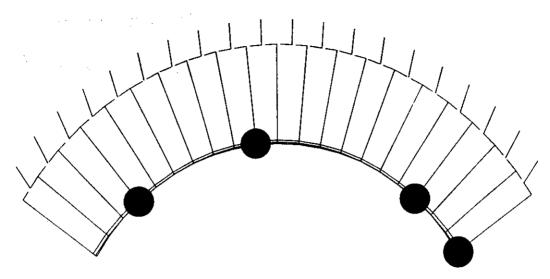


Tiebarck

() Span Depth of fill Ring depth Position of backing	1223 mm 515 mm 303 mm 0	Rise Depth of surfacing Ring depth factor Depth of mortar loss	338 mm 100 mm 1 0 mm
Fill density Surfacing density	0 kN/m ³ 0 kN/m ³	Masonry density	0 kN/m^3
Phi for fill	30 deg	Masonry strength	2.3 N/mm^2
Load Lane width Required ring depth H Left	3715mm 59 mm 52 kN/ m	·· J == =	5.13 53 kN/m
V Left Comp. zone at hinge 2	52 kN/m 31 mm	V Right Factor on pass. press.	50 kN/m .3
Hinges 1 AT 4 2	AT 11	3 AT 18	4 AT 21

Daram/mn) coment

Param (n	m).segme	ent				
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Page Press
1	0	0	0	3	.2	7000 11600
2	0	0	0	8	.3	ň
3	0	0	0	-1.6	.5	Ŏ
4	0	0	0	-2.7	.7	^
5	0	0	Ō	-4	.8	0
6	0	0	0	-5.8	1	0
7	0	0	Ō	-7.5	.9	0
8	0	0	Ō	-8.9	.8	0
9	0	0	0	-10.2	.5	0
10	0	0	0	-10.9	.2	0
11	0	0	0	-10.8	2	0
12	0	0	0	-10	5	0
13	0	0	0	-8.6	8	0
14	0	0	0	-7.1	8	0
15	0	0	0	-5.4	9	0
16	0	0	0	-3.6	8	0
17	0	0	0	-2.3	6	0
18	0	0	0	-1.3	4	0
19	0	0	Ō	7	3	0
20	0	0	Ō	2		0
			•	. 4	1	U



Tiebarck

() Span Depth of fill Ring depth Position of backing	1223 mm 515 mm 303 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	338 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m^3 23 kN/m^3	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	2.3 N/mm^2
Load Lane width	Dead Load 3715mm	Only at 500	
Required ring depth H Left V Left	13 mm 8 kN/m 17 kN/m	V Right	24.1 8 kN/m 17 kN/m .3
Comp. zone at hinge Hinges	2 8 mm	Factor on pass. press.	. 3
1 AT 4	2 AT 10	3 AT 16	4 AT 21

Daram	(നന)	seament

Param (m	n).segmei	at.				
						Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1	5	9	. 7	0	0	0
2	6	-1.2	. 7	0	0	0
3	6	-1.2	. 6	0	0	0
4	6	-1.2	. 4	0	0	0
5	6	-1.1	. 4	0	0	0
6	6	-1.1	. 3	0	0	0
7	6	-1.1	. 2	0	0	0
8	6	-1.1	.1	0	0	0
9	6	-1.1	.1	0	0	0
10	6	-1.1	0	0	0	0
11	6	-1.1	0	0	0	0
12	6	-1.1	1	0	0	0
13	6	-1.1	1	0	0	0
14	6	-1.1	2	0	0	0
15	6	-1.1	3	0	0	0
16	6	-1.1	4	0	0	0
17	6	-1.2	4	0	0	0
18	6	-1.2	6	0	0	0
19	6		7	0	0	0
20	5	9	7	0	0	0

Tiebarck

() Span Depth of fill Ring depth Position of backing		1223 mm 515 mm 303 mm	Rise Depth of s Ring depth Depth of m	surfacing n factor nortar loss	338 mm 100 mm 1 0 mm
Fill density Surfacing density		22.8 kN/m ² 3 40.3 kN/m ² 3		ensity	24 kN/m^3
Phi for fill		30 deg	Masonry st	trength	2.3 N/mm^2
Load Lane width Required ring depth H Left V Left Comp. zone at hinge	2	Dead Load (3715mm 14 mm 11 kN/m 21 kN/m	Geometric H Right V Right		21.11 11 kN/m 21 kN/m .3
Hinges 1 AT 4	2 A	т 10	3 AT	18	4 AT 21

Param (m	n).segmer	nt			_	
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
1		-1.2		0	0	0
2		-1.5		0	0	0
		-1.5	.7	0	0	0
		-1.5	. 6	0	0	0
		-1.5		0	0	0
		-1.5		0	0	0
		-1.5		0	0	0
		-1.4	_	0	0	0
		-1.4	.1	0	0	0
_		-1.4	0	0	0	0
		-1.4	0	0	0	0
			1	0	0	0
		-1.4	2	0	0	0
				0	0	0
		-1.5		0	0	0
		-1.5		0	0	0
		-1.5		0	0	0
		-1.5		0	0	0
19		-1.5	8	0	0	0
20		-1.2	9	Ō	0	0

WS/AI	kins CALCHIATION INDEX		
建 和文化一个。	CALCULATION INDEX		101
A Land	to a series in the company of the co		
	Con Accessorate to topoet?	C = Galoulation	
PROJECT	CC Pascado Control - Contr	S = Sketch D = Data	
FILE NAN	ME DERDEN ROMO RRIDGE	Book	۱ ا
1		Page	J
FILE NO	A11877-611 -		
INDEX NO	CALCULATION/SKETCH/DATA	ORIGINATOR	DATE
Sum	(Number 2	22	3/00
	MACTUS DATA	92 82	3/00
2	AMPLYSIS DITTO + DEMO LONDING) SECTIONS CONDERETIG! SINTERNING	- 25	3/00
3 4-7	SELTION PROPERTIES INTERNAL LONDING AND ANALTSU	10	3/00
8-10	STREW CHECK		3/00.
11	SELTION PROPERTIES	SE Se	3/100
12-14	LORDING AND MURLYSS! JEOGE BEM	32	3/00
15-17	STMES! (HECK)	<u></u>	2 /00
18-19	JACK ARCH	92 U2	2/00 3/00
20.21	THE ROOS	30	5700
			·
ļ			
			<u> </u>
			<u> </u>
-			
		Continued on Sheet	

		Part of structure	Project ECC Assessment Contract 3 Part of structure De boden Rd Bridge				
		Drawing ref	Calc by	Date Feb 00	Check by [Date	
		Calculations		_	Outpu	nt	
	Summan					t	
	`	in beam -intern					
		ing = 7.5tonnes					
		= 40 tonnes					
		,	L PHO.		÷ - ·		
		ion - edge	nona la ca				
		ing = $70R$		-)			
	Shear	= 40 lonrus	(awt)				
	Jack	Ardros					
ŀ							
	Corpa	city - 40 brines					
		outy - 40 brines) ,				
) ,				
	Tié l		,				
	Tié l	oars < 3tonnes.					
	Tie &	cars < 3tonnes.				-	
	Tie l	oars < 3tonnes.				مي	
	Tie &	coars < 3tonnes.				-	
	Tie &	coars < 3tonnes.					
	Tie &	cars < 3tonnes.					
	Tie &	cars < 3tonnes.					
	Tie &	cars < 3tonnes.					

: :

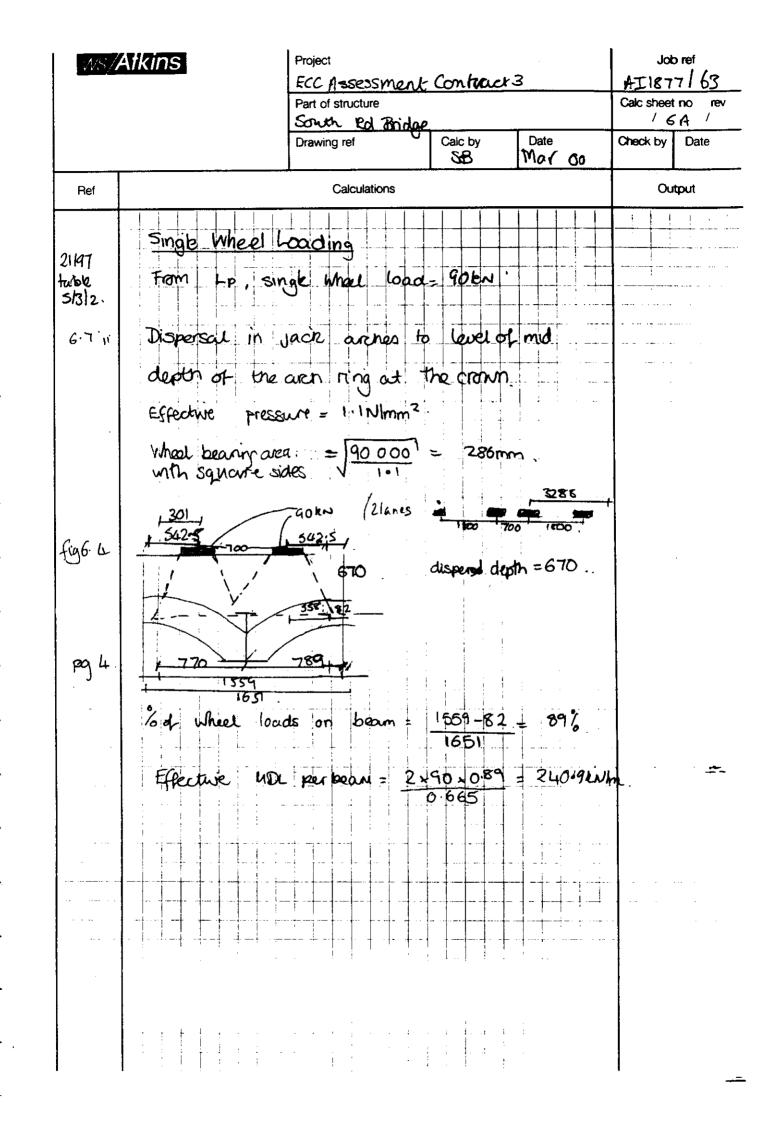
WS/A	kins	Project ECCASSESME Part of structure Deboden Ro		act3	AII8	
		Drawing ref	Calc by	Date Lin 00	Check by	Date
Ref		Calculations			Ou	tput
B1204/ 1004/msp	with brick j Brickworke West elevation Clear squa Sheew = 17° Parapets - b extension and Comageway East foother West foother Currently Parapets - Jack arch Coutegon Cost Iron Jack a Arch b Masony	Smichure - compracte arches alcuments and backfulled to backfulled to backfulled to backfulled to the south end width = 5.08 m may = 0.89 m wide and = 1.68 m wide has a 22 tonn 35 mm bonche barrel thickness a steward with a square thickness archeo - square - squar	d parapets o carriage 05m out and rail de work e work 0 = 300mm can (L) = 7 2 spain (L) 2 spain (L) 1 mm ²	s. Leway level. Height 1532m 7° 1:223m		

= (152 - 38) + (381 - 44) + (38* 528)

= 42600 mm2

Job ref

12


Output

SAL-042 Rev 1 Dec. 89

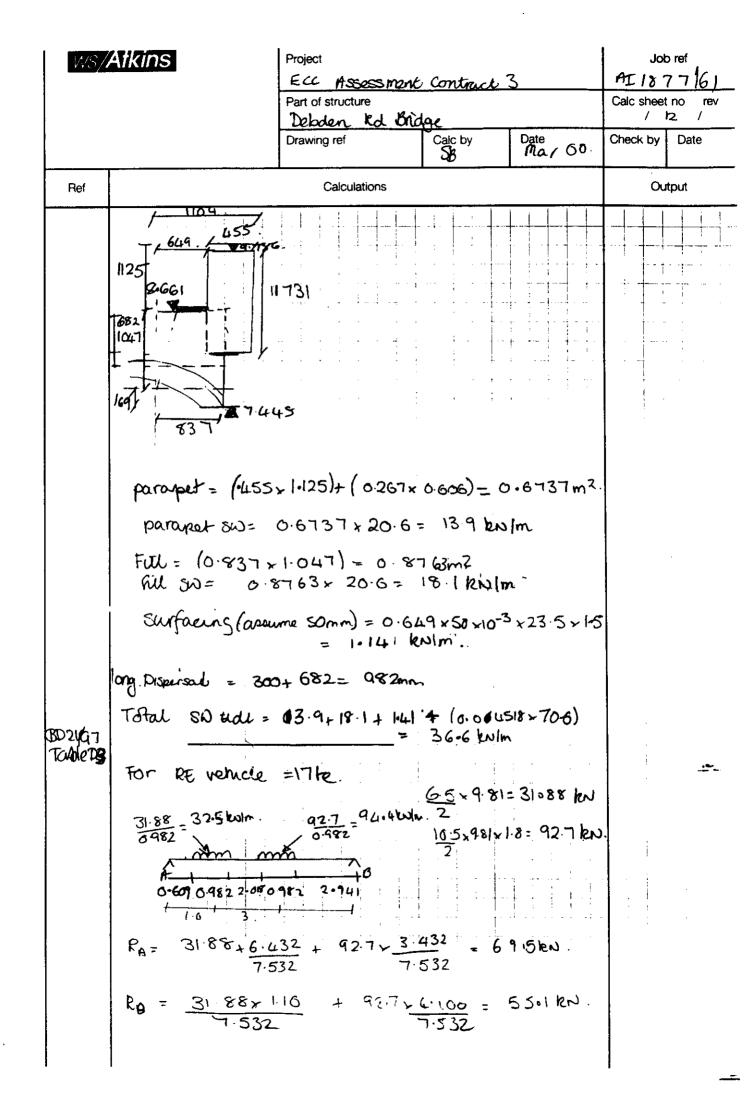
11/8/	Atkins	Project ECC Assessmen	of Court on al	l. 3		b ref 77 6
		Part of structure	J COMMAN	<u> </u>	Calc shee	t no rev
		Jebben Rd Drawing ref	Calc by	Date	Check by	Date
		Colortetions	38	Jun_		ntput
Ref		Calculations				при
	Dead load=	:				
	(20.3 × 1.559) + (0·1×1·55.9×				
	fil+bare	es suf:	•	SW of bea	~;	
	= 40.15 RN	<u>m</u> .				
	Live Loads					
D21/97 5-25	HA UDL =	336 (½) 0.67				
fig6.	L= 7.532m	= 336/_	32) 8-67	86.86tN	lm	
	Adjustment fo	audior, sunce La	7.532			
	AF = a/2.5.	= 3.65/2.5 = 1.0	46			
	ndjusted MA	UDL = 86.86/1.	46 = 5	9.5 bN/m		
s·27 .	Adjusted HA	tuoc pur beam =	\$ 59.5 k	Ju 554 = 370	lkwim	
	HA KEL =	120 ku		1		
	Adjusted 4	A KEL per bei	1.46×2		3kpman	: 1
		ul load for b				•

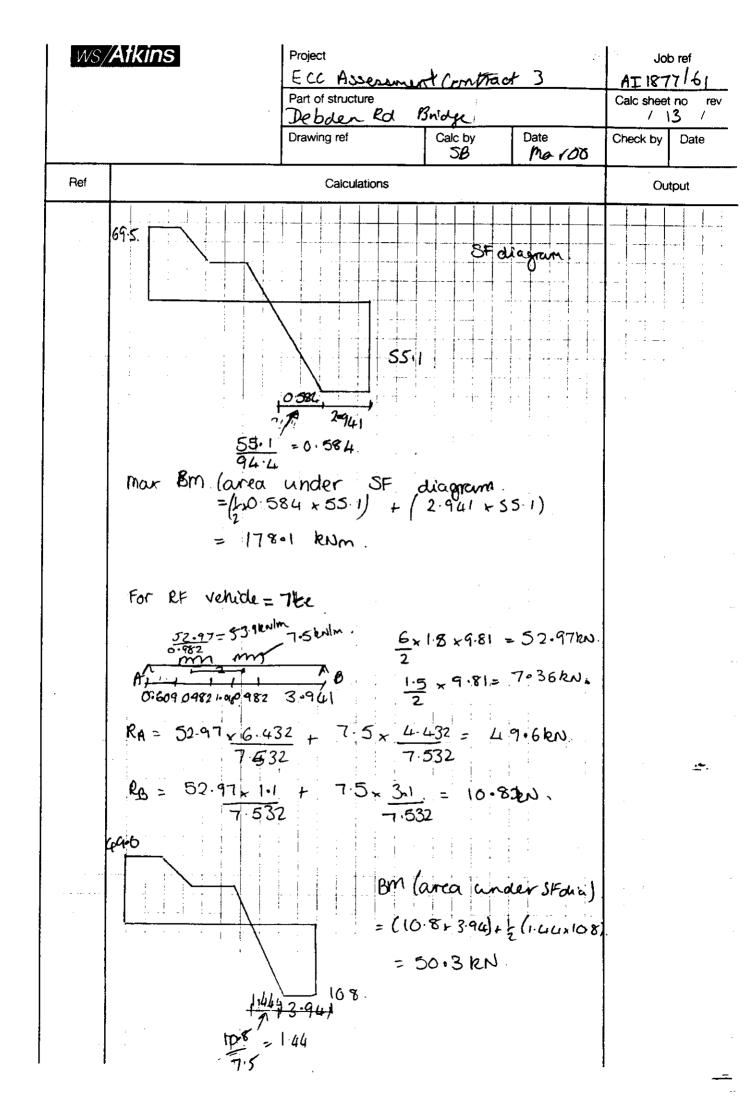
WSAL-(M2 Hev 1 live Jr.)

EM CACL VOLUME

/SAL-042 Rev 1 (36), (4)

WS/	Atkins	Project ECC Assessment Part of structure Debote Rd Bni Drawing ref		Date May 00	A118 Calc shee	t no rev
Ref		Calculations		1 100 4 00	Ou	l itput
7.12	by the for D= overous d= depth D= 1.158 - d= 0.610. Provided; give consolidation no service would consolidate the consolidation of the	ssessed on per lulus of cast ictor Dld ictor Dld depth - 75n of the bare gir of the bare gir of the bare gir lates are firm lates fulling re ices in coursi heckore the s by the Gill.	iron gin wi loa nm der at mid 3. y enicedd out. upporter is are 10 = 1. 3.67×10° = 15.7×10°	ders dung dspan dspan met 775 mm 6 mm 3		

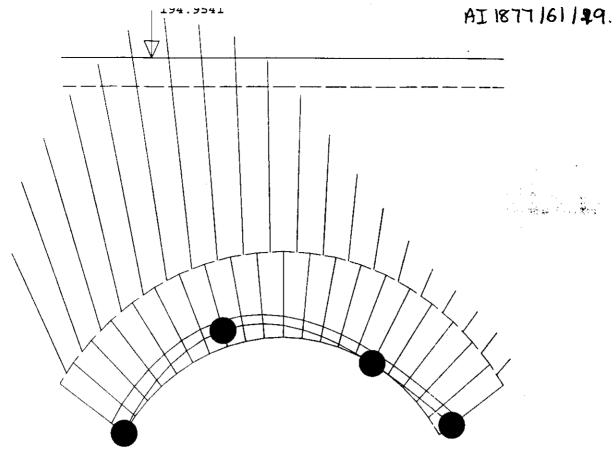

WS/	Arkins Project					b ref
	Ecc	Assessment	, Construct 3		AJ 187	
	1 '	structure Ion Rd Brid	١		Calc sheet	tno 1 9 /
	Drawin		Calc by	Date	Check by	Date
Ref		Calculations	2B	Mar∞	Ou	tput
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
40	Cost Iron - Compress					
·	stress due to penn	. ,				
	Stross due to perman	entload =	40.12×1.5322 ×	(610 - 233·7)×1	p ⁶ .	
		=-51.9	2.069 v1 3N/mm²	o"		
:	(tensile)	= 284.7	× 233.8×10 ⁶	= 32.2Nm	ર	
	stress due to him le (compre	sad = <u>3.9</u>	597 x 106 - 9 76 × 106	<u></u>		
		= -(36.9 Nlmm	2	! !	
	Street o (tensil	2) = <u>35°</u>	7.7 × 106 =	22.9N/mm		•
	Stress due to pen	maner t	live load	Ŋ		
	compressive =				<u> </u>	
	tenaio = 18.	·1+22.9=	LLI NIMI	n ^Z .	:	
	.'. ok,					
0)	for tensile values, the	greater of	the val	ues given by		 -
	fr= 24.6 -0.44fa				ų 	
	fi= 19.6-0.76fd = 19.	6 -6-76+3	2.2)= -4.8	7 N/mm2:		
	Allowable fr =	10-43 N/mr	n²			
	Applied fl > Allo		⊢ .			
	10.43	= 0.4	55			
fig 5/4	Capacity = 7.5	te_				


44-046-1942 1 (but, 6.)

	14/01/2	Aikins	Project			.le	ob ref
4,000			CCC Assessment Continuet 3			1	77 /61
			Part of structure	e commets		Calc she	
- All-A ll's			I				etino revi 10 /
			Deboton Ed Drawing ref	Calc by	Date	Check by	
			Diawing for	SB	Maroo	O'ICCK by	Date
4070-ra	Ref		Calculations			0	utput
							1 .
_g enotina,		for compressivatures	ive values, the	e greater of	the following	·	
باسمبر ا			+ .0.79fd.=-4			1	
		fr = -81.3+	3.15fd = -81.	3 +(3-15 * -51-	8)244:5 N	mnz.	
gentage.	<u>.</u>	Alconable fi	= 1544 /mm2.				
		Applied fl <	CAtlonocude (L .			
janna	4:11	Shear Stress	<u>es</u>				
<i>*</i> ****		Shear stress combined perm	due to personent+live	manent or	>46N1mm		
		Shear due to	permanent loan	ds = 40.15 7	532 = 151 26	ф.	
, marin		Shear et	TCS3 > 161.22 610+3		lmm²		
jan ^{g aga} n.		Shear due	to hie loads	3= (37.1,7.53	2)+51=190	18h,	
_		shear str	$c_{10} = \frac{1907}{610 \times 39}$		2 Nimm ²		
,	 	Shear the	s due to dead	this = 6.5	+82=14.7N	m. 2	#=
] ,	stear stress «	Altonolole	Shear stren	4	-
	:	i) q < 24-6-	•		_		
			· (0 · 40 × 65)=	21 .76 W/r	nm ^{°C}		
~		.' ok	for 40te.				
, Address							
. — ,							

WS/	Atkins	Project ECC Assessment Part of structure Deloden Rd Bnid Drawing ref		Date Jan 00	Jol AI 18 Calc sheet / 1: Check by	no rev
Ref		Calculations			Ou	tput
8021/97 Table	Jeach load a Unit weight of	ind Edge Bearings front 100 = 72 = (381 × 44) + (3 m² about bottom (38 × 528 × 308) + 1 om bottom ea	sed load 100kg/m³ 18 x 528)+ (1 edge (255×38 > 5	255, 38) 591)]/46518		
	$+ \left(\frac{38 \times 528^{3}}{12}\right) + \left(\frac{255 \times 38^{3}}{12}\right) + \left(255 \times 38^{$	(255×38×3	27.1 ²) =			
	$\frac{263.9}{2c} = \frac{-2.527}{610-26}$	×10° = -7.30	x10 ⁶ mm ³	•		<u> </u>

WSAL-042 Hev 1 Drs. 703

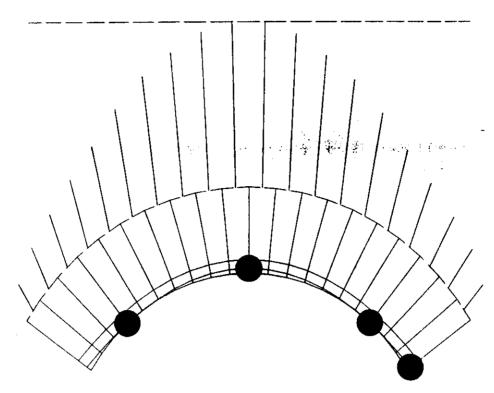

AL-U4Z Hev 1 DEC 33

AS/Atki	ns		ment Contract	3	AI 187	
		Part of structure Debolon Rd Drawing ref	Bridge Calc by	Date	Calc sheet / Check by	no re 4 / Date
- - - - - - - - - - 			2B	Mar 00		
Ref		Calculations] 1 1	Ou	tput
		Compressive +	Tensile Strees	-		
	compressiv	2 - 259 x 10	27 4109			<u>-</u> !
	tensie =	2.527	163.9 = 3	N mm2	-	<u>.</u> .
	compr	to twe bad 55 VC = 50.3 $ 25 = 50.3 \times 1$ 25 = 25	×106× (610-26 527 ×109 06 × 263 9	3-9) - 6:9N - 5-3N/mm²	m ^e	
5	tress due	2:527 6 perm + lw 354+69=	e			
		27+53=		0		
		when of fi, 12		1 1	19	
		76fd = 196-			2.	j fij Jan
	or compres	Klowerou we stress value				
		1 (079(d) = -				
		(315xfd) = - < Allowable &	_)x -35. 4) = -	97.84	me.
	· ok for					

WS)	/Atkins	Project			J	b ref	
		ECC Assessme	nt Contra	d 3	1	77 63	
		Part of structure			Calc shee		
		Drawing ref	Calc by	Date	Check by	<u>-</u>	
	1		SB'	Maroo	O'RECK By	Date	
Ref		Calculations			OL	itput	
	For 17the Vehicle Stresses due to		e+Tensile	Streng			
	comp = -35	4 NImm2.					
	tensile = 271	NImm2.					
	Stress due to						
	Moment due b	Moment due lo live load = 178-1 kNm.					
	Comp. Stress =	178-1 x 10 6x (1 2.527x)=74.4Nlm	2		
	tonsile stress =	178.1 ×106 × 2.527×1	263·9. =	18-6N/mm³	,		
	Strass due pe	rm thie loads	,				
	Comp = -	35.4 - 24.4	= 59.8	N/mn2.			
	tensile = 2	7+18-6=	= 4 5.6 N	1 mm²			
	for tensule						
	fL × 12.7 N/m	m ²					
	Applied FL	.> Allowable 12.7	fr	į		<u></u>	
	-'- Favis	17te.					

James,	WS/	Atkins	Project ECC Assessment	t Contreut	3		b ref 77 /6 \
/Miles			Part of structure Debden Kd Eridae			Calc shee	t no rev
			Drawing ref	Calc by	Date (Yaro	Check by	Date
-	Ref		Calculations	<u> </u>		Ou	itput
 -	411	Shoow Striess					
 -		Shear stress o	due to perm = $\frac{13}{3}$	37.8×103 =	5.9 N/mm²		
,een.		Sheow Stress Load	due to his = 2	2 <u>91.4</u> x103 :	, 12.5 N/mm²		
•		Shear stress	ducto live =	5-9+ 12	S= 18.4M	nn 2 11mm 2	
,		,			C 40 (,,,,,,,	
<i>-</i>			5.449d = 24.6 = 22		59		
рытия.		Applied qu	< Albrable	21			
(Passes u	ore.	•			
parane.							
•							
:							<u>, e</u>
						· :	
_							
,					:		- - -

	ECC Assessment Contract 3	AI 1877 61
	Part of structure	Calc sheet no rev
	Drawing ref Calc by Date	/ 28 /
i	Drawing ref Calc by Date Feb co	Check by Date
Ref	Calculations	Output
	Masonry Arches - Archie	
	Backing level -rone Maconry .s. W = 21 kn/m ³ FUL S.W = 19 kn/m ³ Surfacer sw = 23 kn/m ³ of for fit = 30° Pressure co-ellicent = 0.3 Masonry strength = 2.3 N/min ²	
	Fc=0.45	
	As the condution factor is 0:45, ifor Jack Arch	
	we are concerned with single wheel load	
	Therefore by doubling their lane widthin	
	Archie.	
BD21197	(1.51 h)= 1.5+0.680=2.18m	
	- Lane width input to Archie = 2-18 +045x2	e Gar
	= 1~962m	
PS 29	The Jack Arch passes by hispection .	·
	115te single oute with FOS = 3.18-Archie	repulk


Debden rd

() Span Depth of fill Ring depth Position of backing	1223 mm 680 mm 303 mm	Rise Depth of surfacing Ring depth factor Depth of mortar loss	338 mm 100 mm 1 0 mm
Fill density Surfacing density	19 kN/m ³ 23 kN/m ³	Masonry density	21 kN/m^3
Phi for fill	30 deg	Masonry strength	2.3 N/mm^2
Load Lane width	Single Axl 1962mm	e:11.5t at 100	
Required ring depth H Left V Left Comp. zone at hinge 2	95 mm 48 kN/m 135 kN/m 2 36 mm	Geometric F.O.S H Right V Right Factor on pass. press.	3.18 68 kN/m 55 kN/m .3
Hinges 1 AT 1	2 AT 8	3 AT 16	4 AT 21

Param (mn) . segment

E OFF OR LIN	m, . seamer					
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press
ı	5	-1.1	. 8	-6.9	3.3	0
2	6	-1.4	. 8	-10	3.8	0
3	6	-1.4	. 7	-11.6	3.6	0
4	6	-1.4	. 5	-13.2	3.3	0
5	6	-1.4	. 4	-14.1	3	0
6	6	-1.4	. 4	-15.3	2.6	0
7	6	-1.4	. 3	-15.4	1.8	0
8	6	-1.4	. 2	-14.5	1.3	0
9	6	-1.4	. 1	-13.3	.7	0
10	6	-1.4	0	-11.5	.2	0
11	6	-1.4	0	-9.2	2	0
	б	-1.4	1	-6.7	3	0
13	6	-1.4	2	-4.5	4	1
14	6	-1.4	3	-2.7	3	1
15	6	-1.4	4	-1.3	2	2
16	6	-1.4	4	5	1	4
17	6	-1.4	5	1	0	4
18	6	-1.4	7	0	0	4
19	6	-1.4	8	0	0	4
20	5	-1.1	8	0	0	2

WS/A	tkins	Project ECC Assessmon	nt amtoret	2	Job AI187	ref 7/63
		Part of structure	L VOTOGRAZ		Caic sheet	no rev
		Debden Rol Brid	nne		/ 2	> /
		Drawing ref	Calc by 36	Date Mar 00	Check by	Date
Ref		Calculations			Out	tput
	Tie Bars Tie bar d	iameter = 17mm				
Rég 1.		re 3.7m apart.				
	•	ill assessed w	1 '		- - - - -	
	•	ontal readion	and colle	Uate		•
31	thrust. For 11 Ste 1 Horizonial re	vehilde un an action = 55 km/n	rchie 1			
	Thoust perhèt	0x = 60 x 3,17	= 222kA) ; <u>.</u>		
	Capacity of	tie lear.				
	= 17.2	π × 280= 5	202 EN.	,		
	Tiè bar	fails 11.5te	vehicle.			
		ity of the ba				
	= <u>52 • 2</u> 222	×11.5= 207	te.			بع د
		•		·		. <u>*.</u>
		and the second second second			1	

Tiebar

()					
Span		1223 mm	Rise		338 mm
Depth of fill		680 mm	Depth of s	surfacing	100 mm
Ring depth		303 mm	Ring depth	n factor	1
Position of backing				mortar loss	0 mm
Fill density Surfacing density		19 kN/m^3 23 kN/m^3	Masonry de	ensity	21 kN/m^3
Phi for fill		30 deg	Masonry st	rength	2.3 N/mm^2
Load		Single Axle	::11.5t at	600	
Lane width		3700mm	_		
Required ring depth			Geometric	F.O.S	5.08
H Left			H Right		58 kN/m
V Left		71 kN/m	V Right		69 kN/m
Comp. zone at hinge	2	40 mm	Factor on	pass. press.	.3
Hinges					
1 AT 4	2 A	T 11	3 AT	18	4 AT 21

Daram	(mp)	. seament
Param	ımıı	. RECIDENT

taram (mr) : sedment								
	Stone	Vertical	Horizontal	Vertical	Horizontal	Additional		
	Weight	Dead Load	Deadload	Live Load	Live Load	Pass Press		
1	5 [~]	-1.1	. 8	7	. 3	0		
2	6	-1.4	. 8	-1.4	. 5	0		
3	6	-1.4	.7	-2.1	. 7	0		
4	6	-1.4	. 5	-3.1	. 8	0		
5	6	-1.4	. 4	-4.3	. 9	0		
6	6	-1.4	. 4	-5.8	1	0		
7	6	-1.4	. 3	-7.2	. 9	0		
8	6	-1.4	. 2	-8.3	. 7	0		
9	6	-1.4	.1	-9.3	.5	0		
10	6	-1.4	0	-9.8	. 2	0		
11	6	-1.4	0	-9.8	2	0		
12	6	-1.4	1	-9.1	4	0		
13	6	-1.4	2	-8	7	0		
14	6	-1.4	3	-6. 9	8	0		
15	6	-1.4	4	-5.5	9	1		
16	6	-1.4	4	- 4	8	2		
17	6	-1.4	5	-2.9	7	3		
18	6	-1.4	7	-1.9	6	5		
19	6	-1.4	8	-1.2	4	6		
20	5	-1.1	8	6	3	3		

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. AEB/2116 ECC Bridge No. 1004

Structure: Debden Road Bridge Date: March-2000

APPENDIX C

APPROVAL IN PRINCIPLE

AND

INSPECTION FOR ASSESSMENT

Rail Property Ltd ECC Bridge Assessment Contract No. 3 Rail Property Bridge No. AEB/2116 ECC Bridge No. 1004

Structure: Debden Road Bridge

Date: May-2000

APPENDIX C

APPROVAL IN PRINCIPLE

AND

INSPECTION FOR ASSESSMENT